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Courses

C0MElT 2 Project on Scheikunde, Nieuwe Ach- the more general knowledge ofCO ET roet n tergracht 166, 1018 WV analytical chemical method-

Chemometrics and Amsterdam, The Netherlands). ology.
Qualimetrics - Demonstration (pilot) project -General long courses TheseQuaim trcson a package of courses and courses are similar to those or-

training materials. (Chemo ganized in the earlier, less am-
The --- )as awared sevy -metrics and qualunetrics for bitious COMETT I project. The
projects to European. chemo- I he chemical, pharmaceutical course lasts about 5 days, is or-
metricians In its COMETT g ,and agroaimentary industries). ganized by different countries
program. The objective of the Ecpfothcureor- in turn and has many lecturers

COMETT program is to organize Eie for the course coot- from industry and university.dinated by Dr. Snit, the projectsshoohaebnor
industry oriented training-on a Such schools have been or-
transnational level in advanced are coordinated by the author ganized earlier in Aix en
technological subjects. The pro- this news item. Provence, Gargnano, Tortosa,
gram is open to all 12 EEC The most important project is, Bristol and Bruges. The next
countries but also the EFTA without doubt, the pilot project. It school will be organized in or
countries (Norwa Sweden, Fin- proposes courses on 4 ie'els: around Naimegen. (For details,
land,- Introductory and integration write to Dr. L. Buydens, Labo-
zerland)Four types ef projects courses. The introduction our- ratorm voor Analytishe
were awre l s are 2 to 3 day general cour- Chemic, Katholieke Univer-

reaion of a network for sos, meant for countries where aitit Nimegen, Toernooiveld,l6- h6525 ED Nijmcgen, The
analyzing training needs, or- chemometrics has progressed Netherlands.)
ganizing exchanges, publicizing to a lesser extent. Integration
sources and learning material, courses are those which corn- - Specialized short courses where
etc. This network is called prise chemometrics together subjects can be treated in
E roclimsmoinleti .with more familiar subjects. An greater depth. Many subjects

- Exchange of students and staff. example of such a course is that are possible, but those that
Such an exchange must at the organized by Prof. Ducauze and seem to be favoured are ex-
same time be transnational and Dr. Feinberg in Pa -is (in perimental design, multi-
involve both industry and French, Institut Nationa! Agro- variate calibration, method
university (for example a nomique, Laboratoire do Chi validation and quality as-
university in Belgium can send mie Analytique, rue Cloude surance and expert systems. A
one of its students to an in- Bernard 16, 75231 Paris Cedex list of courses available for in-
dustry in Switzerland). 05, France). By teaching a house teaching will also be

- Short course on metho'alida, course in which chemometrics made available.
tion, This projected is co- is made available in the same - European masters degree. The
ordinated by Dr. H. Smit program as instrumental lab- pairtners in the project will try
(Universiteit van Amsterdam, oratory methods, it aims at the to develop a degree, the aim of
Laboratorium vor Anlytische integration of chemometrics in which is to train chemomet-
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ricians with a sufficiently broad Institut fdr Analytische -Qualit6 et validation des
knowledge. Chernie, Tecknikerotrasse 4, m~thodes. La bonne pratuque

The Zurochemometrics con 8010 Graz, Austria de lahoratoire (9-11/10/91 -
sortium will also produce 'dis- France (North). Coordinator: H. Paris). Information: M. Fein-

tane larnng' corseareand Feinberg, I N A., Laboratoire bergtanc lernin, curseareand do Chimie Analytique, 16 rue -Echantillonnage et contrlle deteaching aids For instance, Olav Claude Bernard, 75231 Paris qualit6 dana lea industries
Kvalheim will zomplete his Codex 5, France agroalimentaires (10-12/4/91

SIRUS DVIER rogainwit Frnce(South). Coordinator: R. - Paris). Information: C.a videotape introduction rourse.
The total level of expenditure Phan-Tan-Luu, LPRAI Centre Ducauze

is bou 2 milio Edo St.-Jtoine, liniversit,6 d'Aix -Information des laboratoiresis bot 2 mllin CU (I e., Marseille Ill, rue Herin Poin- (27-29/11/91 - Paris). Infor-
about US$ 3.2 coillion) of which
the EEC pays half. There are 70 car6, 13397 Marseille Cedex 13, mation: M. Feinberg
partners (about 30 industries, 30 France - Multivariate optimization and

unvriisad10 research in- United Kingdom/Ireland. Coor- experimental design (26-
uestites andrjet's or dinator: S J. Haswell, The 2816/91). Information: 0. Kval-

dinated locally by 12 centres. One University of Hull, School of heimt

of these is devoted to distance Chemistry, Hull, HU6 7RX, - 7th COMET School on
lerig(oriao r . U.K. Chemometrics (date to be an-

learing (cordiato Dr R. United Kingdonm. R. Brereton, nouncod later - Nijmegen). In-
Brereton, University of Bristol, University of Bristol, School of formation: L. Buydens
School of Chemistry, Cantock's
Close, Bristol BS8 ITS, U.K.) and Chemistry, Cantock's Close, - Etude dana un domaine ex-

theothr eeve toorgnizng Bristol LISS ITS, U.K, perinental sans contrainte
cheourse alevd produiga teachng United Kingdom. S. Pringle, (18-22/3/91 - LPRAI Mar-
aids and courseware. The list of University of Bristol, Depart- seille). Information: R. Phan-
these centres is given below, ment for Continuing Education, Tan-Lu

together with thc, name and ad- Wills Memorial Building, -Sensihilisation et principes do
dres o te cordnaor~). ur Queen's Road, Bristol 058 base (16-19/4/91 - LPRAI

ther information can be obtained iiUK asil) nomto: B
fro th auhorof hisartcleor Italy' Coordinator: H. Formsa, Is- Phan-Tan-Luu

from the loa tre satceo tituto di Analisi e Teens, Far- -Formulation et m~langes (3-
fromthe ocalcentesmaout. ed Alinsentari, Via 7/6/1 - LPRAI Marseille). In.

Norsvay/Denmark Coordinator: Brigato Salerno, ponte, 16147 formation: R. Phan-Tan-Luu
0. Kvalheim, University of Ber- Genova, Italy - Hthodes modernes d'8abora-
gen, Department of Chemistry, Spain/Portugal. Coordinator: tion do matrices depdriences
Realfagbygget, Allegt. 41, 5000 FX Rius, Universitat de Bar- optimales, (14-18/10/91 -
Bergen, Norway celsna, Depart. de Quimica, PL. LPRAI Marseille). Information:

The Netherlands. Coordinator: Imperial Tarraro 1, 43005 Tar- R. Phan-Tan-Luu
L. Buydens, Katholieko lUni- ragona, Spain - Sensibilisation ot principes de
veroitoit Nijmegen, Laborato- a. base (18-22/11/91 - LPRAI
rium voor Analytische Chemie, 'The first courses to be a Marseille). Information: R.
Teernoolveld, 6525 ED Nij- one ihnteCMT Phan-Tan.Luu

meen heNthrans scheme are: - Criblage et 6tude des factours
Sweden/Finland. Coordinator: - Chemometrie und ktlnstlichc t9-13/12/91 - LPRAI Mar.

P. Geladi, UmcA Univeraitot, Intelligenz (8-i24A1 - Rluhr- seille). Information: R. Phan-
Department of Organic Chem- Universiltit Bochum). Informsa- Tan-Luu
istry, 90187 UmeA, Swoden tion: W. Wegacheider

Austria/Germany/Swltzerland. - Optimisation: stratkgies et D.L. MASSART
Coordinator: W. Wegscheider, mdthodes (13-15,'3/9 - Paris).
University of Technslogy Graz, I nformation: M. Feinberg
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News

Intriab 1, 1991. The W.J. Youden Award Eligible publications for the

.nter.boratory in Interlaboratory Testing was es- 1991 award must appear in profes-

Testing Award tablished in 1985 to recognize sionally refereed journals or
Nominations publications that make outstand- monograph series in 1989-1990.

ing contributions to the design Nominations, alor. with 6 copies
and/or analysis of interlaboratory (in English) of the publication,

Nominations are now being ac- tests or describe ingenious ap- should be sent to the Chair of the
cepted for the 1991 W.J. Youden plicatisns to the planning and Award Comnuttee, Paul vor Doeh-
Award in Interlaboratory Testing, evaluation of data from inter- ren, Searle, 4901 Searle Parkway,
sponsored by the American laboratory tests. The award con- Skokse, IL 60077, U.S.A.
Statistical Association. Final date sists of US $1,000 and a suitable
for receipt of nominations i April citation.

im Book Review

Fourier Transforms in The objectof this book isto clarify answers) is presented at the end
the similarities and differences of each chapter. These are par-

NMR, Optical, and between the application of ticularly useful if the book is
Fourier transforms to these dif- being used as a class text, butMass Spectrometry. A ferent techniques. It provides, for could also be valuable to readers

User's Handbook, by the first time, a unified treatment who wish to consolidate their un-
A.G. Marshall and of the mathematics of Fourier derstanding of the material pro-

transforms and their application seited in each chapter. The only
F.R. Verdun to the three most common forms significant complaint about the

of FT spectrometry. Despite the style is that, because of the

Elscevir, Ast~erdamn, 1989, X - few limitations noted below, the authors desire to keep the mathe-

450 pages, price Dfl. 220.O0, uS$ aims of this book are achieved ad- matics toa minimum, readers are

107.25 (hardcover), Dfl. 95.00, mirably. regularly requested to verify a
US$ 46.25 (paperback), ISBN 0- The style of this book was oh- particular result for themselves.44487360-0 (ardover), 0444- viously carefully thought out; the This is often justified, since most
87412.7 (paperback) book is both easy to understand of this extra material would rare-

and very readable. The use of in- ly be used and its inclusion would

volved mathematics is avoided ex- simply clutter the text. At other
Fourier transforms are becoming cept where necessary, and exten- times, however, the added detail
increasingly important for a sive use of illustrations is made to would be useful and the fact that
range of spectroscopic techniques, clarify the most difficult points, readers are required to verify it
Some of these tecbniques, such as Physical examples are also given for themselves could be irritating.
NMIR and infrared spectrometry, frequently to show the relevance The book consists of ten chap-
are now performed almost ex- of particular theorems or con- ters, the first six of which cover
elusively using FT instruments. cepts. A set of problems (with general material, and the last
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four of which deal with specific FT-optical spectrometry (in par- form pairs, and other useful data.
types of Fourier transform ticular, FT-IR) may find them These appendices are a good addi-
spectrometry. Chapter 1 intro- somewhat confusing, and a rather tion, end mean that the book cer-
duces spectral line shapes and ex- large portion of the mater.al ir- tonly qualifies as "a user's hand-
plains the Fourier transform relevant. For readers who are book".
relationship between impulse mainly interested in the areas of This book is clearly aimed at
response and continuous oscilla- NMR and/or mass spectrometry, students and scientiste who need
tion experiments. The origins of however, these initial chapters to learn about several types of FT
absorption mode and dispersion provide an excellent and corn- spectrometry, and it is an excel-
mode spectra are also covered. prehensive introduction to FT lent text for this purpose. It

Chapters 2 and 3 cover the spectrometry. should prove to be particularly
mathematics of Fourier trans- Chapters 7, $ and 9 deal with useful both as a teaching text and
forms cf both continuous and dis- aspects of FT spectrometry that as a general reference for Fourier
cretely sampled waveforms. This are unique to FT-mass spectro- transform methods as they are
includes topics such as dynamic metry, FT-nuclear magnetic applied to spectrometry.
range, abasing, zero-filling, apodi- resonance spectrometry, and FT- For newcomers to the fields of
zation, and phase correction optical spectrometry. Of these FT-NMR or FT-mass spectra-

The stated purpose of Chapter chapters, that on FT-optical metry this is also an excellent in-
4 is to deal with expermental spectrometry is by far the troductery text, which puts the
aspects that are common to all weakest. It is appreciably shorter technique of interest into the con-
types of Fourier transform than the other two chapters, and text of other forms of FT
spectrometry. Although this is attempts to deal with FT-in- spectrometry. Although those
generally true, a significant frared, FT-ultraviolet/visible, Fr- wishing to learn about FT-optical
amount efthe material presented Raman andl Hadamard trans- spectrometry may find this book
has little or no relevance to FT- form-Raman spectrometries. to be rather confusing and the in-
optical spectrometry. Consequently, none of these tech- formation in it somewhat limited,

Chapter 5 deals with the dif- niques are covered in enough for those who already have a good
ferent sources of noise that can detail to give anything more than grounding in these techniques
occur in FT spectroietry, and avery basic introduction, considerable insight could be
which sources of noise lead to a Although Chapter 9 is rather gained from the fresh look at old
multiplex advantage or disad- poor, the two chapters on FT- material.
vantage. The effects of signal NMR and FT-mass spectrometry Overall, this is a book to be
averaging, dynamic range, and give a good overview of the cur- recommended, and it should
apodization on the signal-to-noise rer t state of the art, and enough prove to be a valuable addition to
ratio are also discussed. information to give a solid many spectroscopists' bookshel.

In Chapter 6 non-FT methods grounding in the field of interest. ves.
for converting data from the time Chapter 10 provides a brief
to frequency domain are ex- review of the application of FT
plained and compared with the methods to other forms of
FT method. It is worth noting spectrometry. Finally, five appen.
that these initial, general chap- dices are included which give in-
ters are written mainly in the Ian- tegrals and theorems for FT op- RICHARD S. JACK SON and
guago of FT-NMR or FT-mass plications, a description and PETER R. GRIFFITHS
spectrometry, which is not always program listings in FORTRAN Department ofChenistry,
the same as that of FT.optical and BASIC for the fast Fourier The Universityoffdaho,
spectrometry. Because of this, transform algorithm, a coca- Moscow, ID 83843, U.S.A.
,-aders wishing to learn about prehensive atlas of Fourier trans-



N Monitor 6

Meeting Report

MADLUST 90, ington, U S A) and a trio from the I Chemometrics Towards 2000
University of Washington, U.SA., allowed elements of art and culture

Chemometrics representing the Center for to be introduced into chemometrics

Towards 20000, Process Analytical Chemistry (Jim as well as consideration of some of

Tromso, Norway, Burger, Marybeth Seasholtz and the problems facing chemornetrics.
2-6 July 1990 YondongWang).Thepresentations Erik Johanson (Hassle AB,

are subsequent discussions high- Sweden), Willem Wmdig (Eastman
MADLUST 90 was the third in a lighted three major areas, two of Kodak, U.S.A) and Harold Mar-
series of workshop seminars on which are not normally considered tens (Consensus Analysis A/S, Nor-
chemometrics. The previous two, by chemometricians. The interface way) raised the issues of the image
ASTMULD (1984) and MULDAST between the process operator and of chemometrics in managers'
(1987) were very much local to chemometrics is very important minds. There is a need for siripli-
Scandinavian chemometricians and determines the acceptability of city of approach and the incorpora-
developing the theories and tools the method and, hence, its overall tion of techniques from outside
now widely accepted throughout success. Part of the interface is the chemometrics, if chemcmetrics is to
the world. For MADLUST, the or- presentation of the results from survive and develop as a viable
gamsers (Kim Esbensen, Norway, the chemometrics and the concept subject. These, and the major dis-
Paul Geladi and Michael Sjdstrom, of having a visible, variable-sized cussion session subtitled "The
Sweden, and Pentti Minkkinen, dustbin for all unexplained or un- Chemometrics User Speaks Back"
Finland) took a worthwhile expected effects proved to be novel were a highlight of the week as
decision to broaden the focus of the and challenging to some. The third they clarified a number of ideas
meeting to include people from in- area - locally weighted models - that could increase the accept-
dustry who apply chemometrics to has proved valuable but clearly ability and usefulness of chemo-

their particular problems. The hope needs more theoretical develop- metns in many areas, particularly
was, of course, that the two groups ment to be generally applicable, in industry.
would spark idcas off each other. The session on Statistics and The final session, Image
The hope was well realised. The Chemometrics was more con- Analysis, %as presented by Ewart
meeting was organised around four cerned with the theoretical devel- Bengtson (Centre for Image Anal-
main themes: Process Chemo- opment of chemometric and was ysis, Sweden) and Hans Grahn
metrics, Statistics and Chemo- presented by Termed Naes (MAT- (Univeroity of Uni A, Sweden).
metrics, Chemometrics Towards FORSTK, Norway), Age Smilde Here, the benefits of being able to
2000, and Image Analysis in (University of Groningen, The extract from very large image data
Chemometrics. Each theme oocu- Netherlands), Hans Berntsen sets the parts of an image which
pied a day and discussions on the (SINTEF, Norway) and Agnar are related to each other through
theme %ere focused by presenta. H6skuldssn (DIA-M, Denmark). chemical, physical or medical fac-
tions from a small group of speak- Four quite different subjects were tors, were well described. As these
ers. This arrangement meant that discussed: local modelling, the techniques are essentially non-
plenty of time was available for dis- analysis of three dimensional data destructive as far as samples are
cusslon. arrays, the relation of the extended concerned, they have potential in

The Process Chemometrics ses- Kalman filter with bi-linear process analysis, thus bringing the
sion was perhaps the major in- modelling and the optimisation of meeting hack to its starting point.
novation of the meeting. The selecting t-vectors for inclusion in
presentations were by John Mac- a PLS model. Each created con- R.L.TRANTER
Gregor (MacMaster University, siderable discussion and the first GlaranMaaufacturingServices
U.S.A), Roy Tranter (Glaxo two, at least, showed how some of Ltd., Barnard Castle,
Manufacturing Services, U.K, the problems highlighted in the Co. Durham, U.K.
Randy Pell (University of Wash. first session could be resolved.
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Meeting Announcement

2nd caninaiannumber of significant factors in thse "size" problem in multi-

Symposium on P. Geladi: A comparison of cbas- H. Martens, B. Alsberg and E.

Chem meticssificatio's methods as applied to Stark: Multivari ate preprocess-Che om trcschenmical muivariate image ing of NIR spectra by EMSC
Bergen, Norway, analysis and SIS

28-1 My 191M. Gerritsen, L. Buydens, B. Van- D.L. Massart, H. Keller and B.28-1 M y 191deginate and G. Kateman: Bourguignon: An operation re-
Quantitative multivariate search approach to multi-

More than 60 contributios wero analysis of HPLC-IIV data by criteria decision making,
received within the submission GRAMandITT1FA P. Minkkinen: Optimization of en-
deadline (15 January) and we list H. Grahn and J. Saf: MR, i 'S vironmental enmission nmeasure-
a emall aelectian below. The full and MIR *ment plans
program (second announcement) J. Havel, A. Hrdhicka, C. Moreo A. Nerdahi. Conmputer controlled
will be available by 15 February. and M. Valiente: Evaluation of optimzaltion of organic syn-

lOP-A ES maulticomponent trace thetic reactions
Special session: Relations he- analysis da'a by PLS calibra- R. Tranter: Process msonitoring
tween the latent-variable tion and meaningful numbero
approach In chernometrics, S. de Jong: Principal Covariates B. Skagerberg: Multivariate stat-
hionsetrics, econometrics ansI Regression istical process control (MSPC):
psychometrics J. Jonsn, M. Sandberg, S. A.K. Smilde, C.H.P. Bruins,

Rtinnar, NI. Sjdstr~m and S. P.M J. Coenegracht and D.A.
P. Hrst Sity earswit laent Wol: Paameriztio of Doornhos: Conmbination of foe-
P. Bret Sity earewit laent Wel: Paameriztio of torial design and three-way

variables and still mere to comec nucleotides and the use of these analysis to elucidate the in-
J. Birks: Reconstructien of past characteristics in QSARs for fluence of free silanol groups of

lake-waler pH froni biological regulatory DNA sequences the stationary phase on reten-
data - applications of numeri- EJl. Karjalainen and U.P. Kar- tion in RP-HPLC
cal calibrations to acid-rain re- jalainen: Sinmultaneous anal- V.M. Tlaavitsainen: Nonlinear
search ysis of multiple GC runs and nmultivariate data analysis

H.F.M. Boelens, B. van den samiples ith/ alternating N. Vogt- Q(.ality by Design
Begeert and H.C. Smit, Deter- regression W. Windig and C.E. Heckler:
nmination ofparanieler values in N. Kettaneb-Weold: Mfixture design Simple-o-use interactive self-
a signal model using a matched and PLS modelling - sonic in- modelling mixture analysis,

neis developnients and applica-
linearsysteni dust rial applicatioins, lions in industry

R. Carleon: Synthetoniries. O.M. Kvalheim, Yi-zeng Liang S. Wold: Nonlinear PLS with
Recent developments and T.V. Karstang: A full rank splines

L. Erikason and M. Sjoatrom: Ra- solution to evolving factor R-Q. Yu: Chemonietries in China
tional ranking of cheniicals ac- analysis using selectivity and
cording to environmental risk latent projections For registration (deadline 12

K. Esbenaen and P. Geladi: Mfulti- Y.-Z. Liang: Qualitative and April) or informeation, contact:
variate image regression WIRN quantitative analysis of niulti- Laila Kyrlebo or 01ev M. Kval-
- principal component regres- coniponent data - methods for helm, Department cf Chemistry,
sion for modeling and predic- treating white, grey and black Univeraity of Bergen, N-5007 Ber-
tion analytical systems gen, Norway. Fax: -47 5-329058

K. Faber, L. Buydens and G. R. Marine and T.V. Karstang: Op-
Kateman: Determiination ef the tinial scaling - a solution to
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Organizer's summary
This was another important meeting where the use of clustering procedures in his laboratory.

leading researchers in both the chemical and The third session dealt with modeling in chem-
mathematical sciences exchanged ideas and dis- istry. Professor Steve Brown of the University of
cussed new results. There was ample time for Delaware gave his change of time series proce-
participants to form new friendships and exchange dures for calibration while Professor Don Watts
ideas. One of the main benefits of these meetings of Queens University demonstrated how useful
is to get to meet and know colleagues from outside profile t and trace plots can be in obtaining
disciplines. Participants enjoyed wine tasting at a interval estimates. The fourth session dealt with
local winery during the second night of the con- statistical mechanics issues dunng which the audi-
ference. During the first night the participants had ence was treated to interesting fractal plots and
a banquet dinner with after dinner speaker Dr. interpretations. The Speakers were Fereydoon
Herbert Hauptman co-winner of the 1985 Nobel Family from Emory University, Dan ben-Avra-
Prize in chemistry. He at my request, gave a frank ham fromn Clarkson University, and David Weitz
discussion of the difficulty of getting chemists to from Exxon Research Labs.
accept his and Karle's results. Part of these diffi- The sixth session gave an interesting descrip.
culties are presented in the written version of his tion of how a graduate student in statistics work-
talk. Dean Abe Clearfield of Texas A& M and Dr. ing with a distinguished clectrochemist can impact
E. Prince of the National Institute of Standards chemistry. This talk was given by Janet
and Technology at my request have included in Osteryoung. The second talk at this session was
the proceedings their comments that followed Dr. also based upon joint work by an agricultural
Hauptman's talk. chemist and a statistician. They gave interesti.ig

As was the case at the 1985 Chemometrics case study examples of where PLS would and
Research Conference that I coorganzed most in- would not work. The third talk was an interesting
vited talks had invited discussants. Chemists' talks statistical layout of receptor modeling given by
were discussed by a mathematician and mathema. Karen Banden.Roche.
ticians' talks wese discussed by a chemist. Some In the next session Phil Hopke gave a tutorial
speakers were hard to classify as belonging to one on the use of receptor modeling and Ron Henry
field or the other. The main focus of the invited gave a lecture about the use of optimization meth-
discussions was to explain and expand upon the ods in environmental modeling.
main presentation to the broad audience, We had a dynamic session on structural model.

The opening session was moderated by Lloyd tug that included talks by Ted Prince of the NIST,
Currie of NIST and the opening speaker was Leon Macolm Gerloch of Cambridge University, and
Gleser whose talk demonstrated to the conference Milan Randt6 of Drake University. Ted talked
that measurement error models are often useful, about the use of maximum entropy techniques to
The second talk was by Anne Thompson and she resolve structure. (Ted says that since the con-
discussed chemical and statistical modeling to ,n. ference he and some colleagues have made im-
vironmental science. portant advances.) Macolm talked about ligand

The second session dealt with making seisc field theory and the electronic structure of in-
from multivariate data. Peter Jurs gave a survey of organic complexes and Milan gave an interesting
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talk on the use of graph theory as a companion tacked onto his name with the abstract such as
procedure to more often used clustering tech- FRS and ASPCA among others. Cris gave an
niques. interesting talk on experimental design and Pat

The final session was about multivariate analy- Carey gave examples of successful application of
sis and design. It was enjoyed by all. Probably a PLS methods at Los Alamos.
humorous thing that many will remember for a
long time is the 'honors' that Cris Nachheim C.H. SPIEGELMAN
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History of X-ray crystallography

Herbert A. Hauptman
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Abstract

lauptman, H.A. 1991. History of X-ray crystallography. Chesoirseirrcs andlrelligernt Laborator) S)sttmss. 10. 13-18

In tis brief sket.h of the history of X-roy kcystallography I emphasie the important role played by the development of the direit
methods , ubh %ere devised ko solve the central problem of X.ray crystallography. the so-called phase problem. I also stress the
importance of cross disciphnary research. in particular the essential role which mathemautt played in this deselopment.

INTRODUCTION Friedrich and Paul Knipping to perform the nec-
essary scattering experiment.

In 1895 Wilhelm Rdntgen discovered X-rays. The scattering experiment indeed showed that
With this discovery the stage was set for the when a beam of X-rays strikes a crystal, the crystal
creation of the modern science of X-ray crys- scatters the incident beam in many different direc-
tallography. tions and with different intensities. If these

In 1912 Paul Ewald was completing his doc- scattered X-rays strike a photographic plate they
toral dissertation concerned with the optical prop. will blacken the plate at those points where the
erties of a medium consisting of a regular arrange- smattered rays strike the plate. In this way one
ment of isotropic resonators. A crystalline solid obtains the so-called diffraction pattern. This cx-
which, on the sub-microscopic level, consists of a perinment marked the birth of the science of X-ray
triply pertoaic, regular arrangement of atoms, or crystallography and, because of its fundamental
molecules, is therefore precisely the kind of importance in determining crystal and molecular
medium with which Ewald was concerned. Since structures, must be regarded as a landmark event
the smallest interatomic distances in a crystal are in twentieth century science. The major obstacle
of the same order of magnitude as the wavelengths in the path leading from the observed diffraction
of X-rays, it occurred to Max von Lane, upon pattern to the desired crystal structure is known as
learning of Ewald's results, that a crystal might the phase problem, for reasons to be given shortly.
serve as a three-dimensional diffraction grating for I propose here to gtve a brief historical account of
X.rays. In order to test this hypothesis he pre- the methods devised to overcome this obstacle, the
vailed upon the younger physicists Walter so-called direct methods of X.ray crystallography.

0169.7439/91/$03 50 0 1991 - Elsevier Science Publishers BV.
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THE DIFFRACTION PATTERN the information content of a typical molecular
structure coincides precisely with the information

It has already been remarked that a crystal may content of its diffraction pattern It is a measure
be regarded as a regular triply periodic arrange- of the great advances made by the new science of
ment of an array of atoms. One imagines three X-ray crystallography that one nowadays can
families of planes, the planes in each family being routinely transform the information content of a
parallel to and equidistant from one another. In diffraction pattern into a molecular structure, at
this way one obtains a tiling of the crystal space least for the so-called 'small' molecules, that is
by means of congruent parallelepipeds each one of those consisting of some 150 or fewer non-hydro-
which is said to be a fundamental parallelepiped, gen atoms.
or unit cell, of the crystal.

If each unit cell contains a molecule - a
collection of atoms - in its interior, and if the TIE PIASE PROBLEM
atoms are arranged in precisely the same way in
all the unit cells, then each unit cell and its con- Since X-rays, like ordinary visible light, are
tents are indistinguishable from every other unit electromagnetic waves, they have a phase as well
cell and its contents, as an intensity, just as any other wave disturbance.

There corresponds to each atom an electron In order to work backwards, from diffraction pat-
density function; hence. by superposition of the terns to crystal and molecular structures, it turns
individual atomic electron density functions, one out to be necessary to measure not only the inten-
obtains an overall electron density function p(r), sities of the X-rays scattered by the crystal but
a nonnegative function of thz ,sition vector r their phases as well. However, the phases cannot
which gives the number of electrons per unit be measured in the ordinary kind of diffraction
volume at the position r. It is clear from the experiment, they appear to be irretrievably lost.
geometric construction that the electron density Only the intensities can be directly measured. This
function in any unit cell is identical to that tn then gives rise to the central problem of X-ray
every other unit cell. Hence p(r) is a triply peri- crystallography, the so-called phase problem, how
odie function of position, and this property may to deduce the values of the phases of the X-rays
be taken as the mathematical definition of a scattered by a crystal when only their intensities
crystal. are known. For some forty years after the land-

If on the other hand we choose to regard a mark experiment of Friedrich and Knipping, all
crystal as a triply periodic arrangement of an attempts to find a general method for going di-
array of atoms, or molecules, then by a crystal rectly from the diffraction pattern, that is meas-
structure we mean simply the arrangement and ured intensities alone, to the crystal structure, with
identities of the atoms in the unit cell and by a or without the intervention of the phases - a
molecular structure the arrangement and identities method that would be useful for the complex
of the atoms in the molecule, structures of interest to chemists, biologists, and

It was recognized almost from the beginning mineralogists - were defeated.
that the diffraction pattern, that is the directions In fact, because the needed phase information
and intensities of the X-rays scattered by a crystal, was lost in the diffraction experiment, it was
is uniquely determined by the crystal structure; thought that one could use arbitrary values for the
which is to say that if one knew the crystal strue- phases associated with the measured intensities of
ture - the arrangement of the atoms in the the scattered X-rays. In this way one obtains a
crystal - then one could calculate the diffraction myriad of different crystal structures, all con.
pattern completely. It turns out that, conversely, sistent with the known intensities, It therefore
diffraction patterns in general determine unique came to be generally believed that a procedure for
crystal and molecular structures, although this fact going directly from the measured intensities to
was not known unt;I many years later. In short, crystal structures could not, even in principle, be
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devised. By the same mode of thinking, the prob- individual phases by exploiting relationships be-
lem of deducing the values of the individual phases tween measured diffraction intensities and phases
from the diffraction intensities, the so-called phase are known as direct methods.
problem, was also thought to be unsolvable, even The argument just presented was in fact antic-
in principle. It wasn't until the early 1950s, through ipated in 1927 by Heinrich Ott [11, who showed by
the exploitation of special properties of molecular algebraic analysis and applications that the method
structures and through a simple mathematical is capable of solving simple centrosymmetric
argument, that these erroneous conclusions were structures, in which all phases must be either 0 or
finally refuted. ir. The method was further elaborated by Kedares-

war Banerjee in 1933 (21 and Melvin Avrami in
fltonmicily 1938 (3) but was clearly of only limited value in

applications. While this early work of Ott, Baner-
The special property that all crystal and molee- jee and Avrami shed important light on the more

ular structures possess may be summed up in one general phase problem, it attracted little attention
word: atomicity. Thus the electron density fune- at the time and was not further developed, it
tion p(r) in a crystal takes on large positive values appears now to be all but forgotten.
at the atomic position vectors and drops to small
values between the atoms. If our goal is merely to Solving the phase problem
determine the positions of the atoms - that is,
the positions of the maxima of p(r) - rather My work on this problem started in 1948 about
than the much more complicated electron density a year after I joined the Naval Research Labora-
function associated with the distribution of atoms tory in Washington, DC and commenced my col-
in 'he crystal, then our problem is greatly sim- laboration with Jerome Karle. It had been some
plified, it turns out to be not only determinate but 35 years since Friedrtch and Knipping had carried
actually greatly overdeteriined by the available out their famous experiment, and by 1947 the
X-ray diffraction intensities, phase problem, the central problem of X-ray

This is most easily seen by eliminating the lost crystallography, was still unsolved and generally
phase information from the relationships between regarded as unsolvable. The central importance of
the diffraction pattern and the crystal structure, this problem and its strong mathematical compo-
Doing this results in a system of equations relating nent combined to provide a challenge that could
the diffraction intensities alone with the atomic not be denied.
position vectors. Because the number of these Then too, there was a certain air of mystery
relationships far exceeds (by a factor of ten or so) surrounding the problem. On the one hand the
the number of unknown position vectors needed simplicity and logic of the argument "proving" its
to define the crystal structure, our problem is unsolvability. even in principle, appeared to be
greatly overdetermined. Thus At is clear that there overwhelming. On the other hand crystal and
%..ist relationships between the measured diffrac- molecular structures were being solved, although
tioi intensities and the lost phases that may be the structures studied w,.re almost always very
exploited. It follows that the phases of the scattered simple ones involving a small number of atoms or
X-rays are also determined by their intensities. In larger structures containing one or a small number
sho., the lost phase information is to be found of heavy atoms, for which special techniques had
among the available intensities, and the phase been devised. It had not yet been generally under-
problem is therefore a solvable one, at least in stood that the implicit assumption of atomicity
principle. There remains the task of devising and the concomitant trial-and-error approach to
numerical algorithms leading from the abundance most structure solutions had imposed a powerful
of experimentally measured diffraction intensities restriction on the permitted values of the phases.
to the values of the individual phases. The tech- The first important contribution that Karle and
niques of X-ray crystallography that deduce the I made was the recognition that it would be neces-
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sary to exploit prior structural knowledge to trans- Before we could even get started, an unex-
form the phase problem from an unsolvable one pected complication arose. It turned out that be-
to one that was solvable, at least in principle. Our cause the values of the individual phases clearly
first step in this direction was to exploit the non- depend not only on the crystal structure but also
negativity of the electron density function p(r). on the choice of origin, they are not uniquely
Before our analysis was complete, however, David determined by the crystal structure alone. It fol-
Harker and John Kasper published their famous lowed that the diffraction intensities alone do not
paper [4) in which they derived inequalities in determine unique values for the phases. The pro-
which the measured intensities restrict the possible cess leading from diffraction intensiti s to phases
values of the phases. This was a very mysterious would have to include a recipe for specifying the
paper, because nowhere in it does there appear origin. This required that we separate out two
any explicit mention of the basis for the inequality contributions to a phase, one due to the crystal
relations, and indeed the most important fact is structure alone and one due to the choice of
conspicuous by its absence. It is simply that the origin. We clearly needed to study how a phase is
electron density function is nonnegative every- transformed when the origin is shifted, a problem
where. This fact is, however, implicit in Harker that was complicated by the fact that the permis-
and Kasper's work. In very short order Karle and sible origins depend on the crystallographic ele-
I completed our own analysis and derived the ments of symmetry, which were usually known in
complete set of inequality relationships based on advance.
the nonnegativity of the electron density function The solution was made easier by the discovery
[51. It includes the Harker-Kasper inequalities as that there are always certain linear combinations
a special case, and many others besides. Although of the phases, the so-called structure invariants,
the complete set of inequalities greatly restricts the that are uniquely determined by the crystal struc-
values of the phases, the relations appear to be too ture alone and are independent of the choice of
intractable to be useful in applications, except for origin. It is therefore only the values of the struc-
the simplest structures, and their potential has ture invartants that we can hope to estimate from
never been fully exploited, the measured intensities. Once we have estimated

The recognition in 1950 and 1951 that mole- a sufficient number of these we can then hope to
cules consist of atoms that to a good approxima- evaluate the individual phases by a process that
lion may be regarded as potnts completely trans- incorporates a recipe for specifying the origin.
formed the nature of the phase problem. While it What was clearly called for was the devtsing of
meant accepting as fact that the observed diffrac- a method for identifying the structure invariants,
lion intensities by themselves were indeed not and then using these to come up with recipes for
sufficient to determine a unique electron density fixing the origin appropriate to the different ele-
function, it also meant that they were more than ments of crystallographic symmetry that may be
sufficient, by far, to determine the atomic position present. Once this was done there would remain
vectors [61. It meant as well that the phases corre- the task of estimating the values of the structure
sponding to the point atom structure were greall, invariants by means of their conditional probabil-
overdetermined by the available intensities. li. ity distributions, assuming that an appropriately
nally. it meant that a formidable psychological chosen set of diffraction intensities is known.
barrier had been removed, because it now made
sense to look for a solution to the phase problem, Probabilistlc techniques
that is, for numerical algorithms leading from
measured intensities to individual phases. In Beyond any doubt our most important contri-
hindsight it is perfectly clear that owing to the button during the early 1950s was the introduction
great overabundance of diffraction data, a prob- of probabilistic techniques - in particular, use of
abilistic approach is called for; some 40 years ago, the joint probability distribution of several dif-
however, this was not so apparent, fraction intensities and the corresponding phases

!I



a Onginal Research Paper 17

- as the central tool in the solution of the phase skepticism, if not outright hostility. In hindsight I
problem [7]. We assumed to begin with that all think this reaction was due, first, to the strong
positions of the atoms in the unit cell of the mathematical flavor of this early work, not well
crystal were equally likely, or, in the language of understood by most crystallographers, as well as
mathematical probability, that the atomic position the ingrained and almost universal belief that the
vectors were random variables, uniformly and in- phase problem was unsolvable in principle and
dependently distributed. With this assumption the that any claim to the contrary must therefore be
intensities and phases of the scattered X-rays, as flawed This nearly universal skepticism and in-
functions of the atomic position vectors, are also ability to understand the proposed solution no
random variables, and one can use the methods of doubt explains why so few early attempts to apply
modern mathematical probability theory to calcu- the new methods were made. It wasn't until the
late the joint probability distribution of any col- 1960s. when easy to use computer programs be-
lection of intensities and phases. A suitably cho- came available, that widespread applications were
sen joint probability distribution leads directly to made.
the conditional probability distribution of a Today some 100000 molecular structures are
specified structure invariant, assuming again an known, most determined by the direct methods,
appropriately chosen set of diffraction intensities, and about 5000 new structures are added to the
The conditional distribution in turn leads to the list every year It is no exaggeration to siy that
stucture invariant, an estimate of which is given, modern structural chemistry owes its existence to
for example, by its most probable value. Once one this development.
has a sufficiently large number of sufficiently reli- Although no equations are shown in this article,
able estimates of structure invariants, one can use it should be clear that the developments described
standard techniques to calculate the values of the here would not have been possible without strong
individual phases, provided that the process incor- dependence on mathematical techniques, in par-
porates a recipe for specifying the origin. ticular the modern theory of mathenmatical prob-

Although probabilistic methods played an Cs- ability, and it is this interaction between mathe-
sential role in the development of the direct matics and the phase problem of X-ray crystallog-
method and provided it with its logical founda- raphy which I have tried to emphasize in this
tion, it must also be pointed out that non-prob- article. Work on the phase problem continues to
abilistic methods also played an important part. this day and applications to structures of ever
In this connection the early work of Sayre [8], increasing complexity continue to be made. It still
Zachariasen 191. Cochran [101 and Woolfson (11) appears that progress is made only in proportion
should be mentioned. In particular the well known to our ability to bring more powerful mathemati-
Sayre equation, a relationship of fundamental im- cal techniques to bear on this fas,.mutMg problem.
portance among measured magnitudes and un-
known phases, continues to be useful to the pres-
ent day and lies at the heart of some of the more ACKNOWLEDGEMENT
successful computer programs for solving crystal
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I cannot conclude this brief account of the REFERENCES

early history of the direct methods of X-ray crys-
tallography without also describing the reception I It. O Structure ana136-i. Zesthift fur Kristallographir,tn 66 (1927) 136-152t.
this work received at the hands of the crystallo- 2 K. Banerec. Determiaution of the sigps of the rouner
graphic community. This was, simply, extreme terms in complete crystal structure anal)sis. Procodings of



Chemometmics and Intelhgent Laboratory Systems a

the Ro)al Society of London, A; Mathematical and Physical The Centrosymmetrsc Crystal. American Crystallographic
Sciences. 141 (1933) 188-193. Association Monograph No. 3. Polycrystal Book Service.

3 &1 Avarn, Direct determination of crystal structure from Dayton, OH, 1953.
X.ray data. Physical Reoven, 54 (1938) 2M0-303. 8 D. Sayre. The squaring method: a new method for phase

4 D Harker and J S Kasper. Phases of Founer coefficients determination, Acta Cystallographca. 5 (1952) 60.
directly from crstal dlffraction data. Acta Crystal 9 WJI.A. Zachariasen. A new analytical method for solving
iogrophsca. 1 (1948) 70-73. complex crystal structures Acta Crystallographira. 5 (1952)

5 J. Katie and H, Hauptman. The phases and magnitudes of 68.
the structure factors. Aeta Crystallographica. 3 (1950) 181- 10 W. Cochran. A relatson between the signs of structure
187, factors, Arta Cystallographira. 5 (1952) 65.

6 I. Hauptman and J. Katie. Relations among the crystal 11 NI, Woolfson, The statistcal theory of sign relationships,
structure factor&, Physical Recicow, 80 (1950) 244-248. Arta Ciystallographleta. 7 (1954) 61.

7 11. llauptman and J. Katie. Solution ofthe Phase Problem 1,



0 Comment 19

Chemometrics and Intelligent Laboatory Systems, 10 (1991) 19
Elsevier Science Pubhshers BN.. Amsterdam

Comments on "History of X-ray crystallography" by
Herbert A. Hauptman

E. Prince
National Institute of Sta dards and Technology, Gaithersburg. AID 20899 (US A)

My own career as a crystallographer corre- while my fiancee was teaching in a school in the
sponds very closely with the development of direct Boston suburbs I had a strong incentive to get to
methods of phase determination. In fact my first that meeting) The program at this meeting had a
exposure to crystallography was in the summer of series of half a dozen paper whose titles were
1949 when, freshly out of college, I had a tem- variations on the theme "Why the methods pro-
porary job in the laboratory of David Harker and posed by Hauptman and Karle won't work." These
John Kasper, who had recently completed the were followed by a paper by Clark. Evans and
determination of the structure of decaborane, the Christ, of the U.S. Geological Survey, entitled
first structure to be determined ab mitso front "The Structure of Colemanite, Solved Using the
diffraction data alone. I was an interested spec- Methods of Hauptman and Karle," This paper did
tator during the early 1950s, when the work of not completely silence the opposition (1 remember
Herbert Hauptman and Jerome Karle was the also a rather sharp exchange between Jerry Karle
subject of sometimes bitter controversy, and I and Michael Woolfson, who was later to become
have a particularly vivid memory of an American one of the leaders in the development of direct
CrystallographicAssociation meeting that was held methods, at a meeting at Cornell in 1959). but
at Harvard in the spring of 1954. (1 can be ab- acceptance of the ideas of direct methods had
solutely positive about the date, because I was become quite general by the early 1960s.
working at the time at Bell Labs, in New Jersey,
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I remember well as a student, attending the worked with Linus Pauling and then worked as a
first presentation to the cr'stallographic commun- postdoe with Eddie Hughes. Phil later went on to
ity, by Herb Hauptman and Jerry Karle, of their make his own modest contribution to 'Direct
ideas on solving the phase problem. I believe it Methods' but then gave up what surely would
was an American Crystallographic Association have been a brilliant career to take over the family
Meeting at the University of Michigan. We were geology instruments business.
all assembled in a large auditorium and as Dr. Much later, when Herb Hauptman came to the
Hauptman has stated, the presentation was quite Medical Foundation of Buffalo, his initial experi-
mathematical. At the completion of the talks, there mental group included Bill Duax, who worked as
was a moment of stunned silence, then many a postdoe with me, and Dave Smith my first Ph.D.
hands shot up tc ask questions, I thought. Instead student. Later my second Ph.D. student, Bob
each of the then leading lights of crystallography Blessing, joined the group. These now senior level
felt obligated to reveal their own brilliance by scientists, along with the other bright younger
putting these two young upstarts on their place. members of the group, have solved some exceed-
They began to criticize the methods and tried to ingly different problems in biological systems as
point out the fallacy in the Hauptman-Karle ap- part of the overall effort to apply 'Direct Meth-
proach. During this heated discussion, my major ods' to crystallographic problems. The power of
professor, Dr. Philip Vaughan leaned over and the method is still being developed and gives
said to me "these guys really have something". promise of revealing to us the intricate secrets of
Phll was only three years out of Cal Tech having both the mineral and living worlds.
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Abstract

Ilopte, P.K.. 1991. An introduction to receptor modeling. Chenonteitnc and Imnihgcot laboratory S)strnu. 10. 21-43.

A major problem facing air quality management personnel is the identilication of sources of astborne particles and the
qa.inittatae pportnonnmni of the .acrosol mass to those sourtes. The ability to oil.i paride iamples and analyze these wmpte for
a sutte of elements by such techmqum as neutron .Attvatton analysis or X-ray Ituoresien e provides the data for the problem of
resolMIng A tnes of soUMplcx mixtures into its omponents based on the profies of the elements emitted by the vanou souurs in the
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airshed, If all of the sources and their composition profiles are known, then the mass balance model beomes a multiple regression
problem If a series of samples have been analyzed without substantal informatlion being avaitable on the sources, fator analysts
methods can be emplo)ed In both situations, the analysts is compihcated by higher levels of measurement error in these analyses than
tn typial spectrochemical problems, In addition, the source profiles can vary as the compositon of input materials for the emission
sources change in time Thus, there am hmitattons to the abdity of statistical methods to resolve sourecs tn real world problems The
physical and statistical basis of these methods and their application to representative problems will be reviewed

I INTRODUCTION becomes possible to quantitatively apportion the
observed airborne concentrations such as airborne

The advent of a U.S. national ambient air lead among the various source types.
quality standard for total suspended particles The importance of receptor models as air qual.
(TSPs) in the early 1970s created the need to ity management tools in the U.S. has recently
identify particle sources so that effective control been substantially increased by the promulgation
strategies could be designed and implemented. of a new ambient air quality standard for par-
The initial efforts at identification of particle tiulate matter. This new standard requires all of
sources focused on dispersion models of point the state and local air quality planning agencies to
sources and, in most cases, resulted in substantial revise their plans for improving air quality and
reductions in TSP levels. However, as the incre- reducing the particulate level concentrations where
ment of additional control needed to reach stan- they are expected to exceed the prescribed levels
dard levels became smaller, the model uncertain- In the associated guidance documents provided by
ties led to difficulties in identifying the actual the U.S. Environmental Protection Agency [I],
sources of continuing problems. In addition, fugi- receptor models are explicitly approved for use in
tive and other non-ducted emissions are generally this planning process along with the traditional
not treated or are poorly handled in these models, dispersion models. Thus, receptor models have
Thus, additional methods were required to iden- now become an accepted part of the regulatory
tify and quantitatively apportion particle mass to process for air quality management.
sources These new methods are called receptor This paper will outline several of the applicable
models. In them, the measured properties of the models, provide examples of their use in appor.
collected ambient samples are used to infer the tionmg materials in a nunmber of airsheds, and
contributions of the sources to the ambient pollu- demonstrate how they can identify the influence
tant concentration These methods require that of emissions on the overall airborne particle con-
samples be obtained at locations of interest, recep- centrations.
tor sites, and that the samples so collected be
analyzed for the properties that are characteristic
of the pollutant sources.

These requirements have arisen at a time when 2 PRINCIPLE OF MASS CONSERVATION
new analytical methods have been developed that
permit multielemental analysis of large numbers All of the currently used receptor models are
of airborne particle samples or microscopic char- based on the assumption of mass conservation
acterization of large numbers of indivtdual par- and the use of a mass balance analysis. For exam-
ticles. Thus, large data bases on the composition ple, let us assume that the total atrborne par-
of airborne particles are available for use in these ticulate lead concentration (ng/ m

) 
measured at a

receptor models. Although much of the thrust of site can be considered to be the sum of contribu-
the model developments have been aimed at iden- tions from independent source types such as mo-
tifiation of sources of particle mass, they also can tor vehicles, incinerators, smelters, etc.
be used to elucidate the origins of the various
measured species observed in the samples. It then PbT - Pb,.0 5 + Pb,,. + Pb. + .(1)
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However, a motor vehicle burning leaded gasoline number of sources and their compositions at the
emits particles containing materials other than receptor site are known. This approach was first
lead. Therefore, the atmospheric concentration of independently suggested 'by Winchester andlead from automobiles in ng/cm3

, Pb,,,o, can be Nifong [21 and by Miller et al. 131. The composi-

considered to be the product of two cofactors: the tion of an ambient sample is then used in a
gravimetric concentration (ng/mg) of lead in au- multuple linear regression against source compos-
tomotive particulate emissions, aa ,  and the tions to derive the mass contribution ofeach source
mass concentration (mg/

3
) of automotive par- to that particular sample. Miller et al. [31 modified

ticles in the atmosphere, 4.o, eq. (3) to explicitly include changes in composi-
Pb .t. - alb-IJ.-a (2) tion of the source material while in transit to the

receptor
The normal approach to obtaining a data set for P
receptor modeling is to determine a large number x a aZ s, (4)
of chemical constituents such as elemental con- 4-i
centrations in a number of samples. The mass
balance equation can thus be extended to account where aA is the coefficient of fractionation so that

for all ni elements in the samples as contribu ,were the composition of the particles as
tifro m p nel ennten su es aemitted by the source, a,, is the composition oftions from p independent sources the particles at the receptor site (a,, = a,an). In

practice, it is generally impossible to determine
xv E aJA i- 1,t j- l.n (3) the a 5 values and they are assumed to be unity

where x,, is the ith elemental concentration mea-
sured in the jth sample. a,k is the gravimetrie 3.2 Previous apphcations
concentration of the ith element in material from
the kth source, and f4, is the airborne mass Early applications of this approach to urban
concentration of material from the kth source arly app tion i chtodubanaerosol mass apportionment included Pasadena,
contributing to the jth sample. There are several CA [4). Heidelberg, Germany 151, Ghent, Belgium
different approaches to receptor model analysis 6). and Chicago, IL 171. In all of these analyses,
that have been successfully applied including the quality of available source compositions
chemical mass balance (CMB) and multivariate the lit of avai s ion sseverely linsited the precision to which the am-
receptor models including principal components bient compositions could be reproduced.
analysis and target transformation factor analysis Several major research efforts have subse-(TTlFA). These msodels can be applied to both Svrlmjrrsac fot aesbe
particulate and gaseous species. The basids for each quently resulted in substantially better source data.of these methods will be presented in subsequent The source emission studies led to much improved

resolution of the particle sources in Wasbngton.
sections of this paper along with examples of their DC [8,91. In one of these studies, Kowalezyk et al.
application to the identification of pollution (8) used a weighted least-squares regression analy-
sources in the atmosphere. sis to fit 6 sources with 8 elements for 10 ambient

samples. In these analyses, the ambient elemental
concentrations are weighted by the inverse of the

3 CIIEMIICAL MASS BALANCE square of the analytical uncertainty in that mea-
surement.

3.1 Introduction Subsequently, Kowalczyk et al. 191 examined
130 samples using 7 sources with 28 elements

The chemical mass balance (CMIB) sometimes included in the fit. Although 28 elements were
called the chemical element balance solves eq. (3) used in the fitting process, the fit did not change
directly for each sample by assuming that the appreciably with varying numbers of elements in-
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eluded with the exception of some of the key commercial and geological natural gas. Thus, au-
tracer elements such as Na, Pb, and V. Cheng and tomobiles and other highway-related sources were
Hopke (101 have recently examined these data responsible for the majority of these hydro-
using a variety of regression diagnostics. They carbonq.
found that these 'marker' elements can be cearly A similar study utilizing this mass balance ap-
identified and their influence on the quality of the proach for resolving hydrocarbon sources has been
fit to the ambient data and the source mass contri- made. Nelson et al [131 have examined the at-
butions can be quantitatively estimated. mospheric hydrocarbons in Sydney, Australia.

The elemental balance sheet allows the identifi- They used a much more extensive hydrocarbon
cation of the major sources of metals in the air. profiles for their sources and have obtained good
For example, vanadium and nickel primarily anse agreement between the mass balance approach
from oil-fired power plant emissions; 23 of 25 and a resolution based on an emission inventory.
ng/m3 for V and 4.0 of 17 ng/m

5 
for Ni with They also found that the major hydrocarbon

most of the nickel unexplained. Subsequent stud- sources were direct automobile exhaust (36 + 4%)
ies have shown that Kowalczyk et al. (9) used an and evaporative emissions of gasoline (32 ± 4%)
unusually low Ni/V ratio for the oil power plant Thus, it was possible to identify the impact of
profile which led to the underprediction of Ni. highway emissions on gaseous as well as par-
Zinc is mainly released by incinerator sources but ticulate pollutants.
also comes from motor vehicles (51 ng/m from In 1979, Watson [14) and Dunker [15) indepen-
refuse incinerations and 7.3 ng/m from motor dently suggested a mathematical formalism called
vehicles). The reverse is true for lead wtth motor effective variance weighting that included the un-
vehicles as the primary source and refuse incinera- certainty in the measurement of the source com-
tion as a lesser but important source, 428 ng/m

3  
position profiles as well as the uncertainties in the

from motor vehicles and 34 ng/m
t 

from incinera. ambient concentraions As part of this analysis, a
tion. In this way sources of both pariculate mass method was also developed to permit the calcula-
and specific elements can be identified, tlion of the uncertainties in the mass contributions.

Mayrsohn and Crabtree [11 presented the use Effective-variance least squares has been incorpo-
of an iterative least-squares approach to apportion rated into the standard personal computer soft-
6 sources of airborne hydrocarbon compounds. ware developed by the U.S. EPA for receptor
The sources were automotive exhaust, volatiliza- modeling.
tion of gasoline and release of gasoline vapor, The most extensive use of effective-variance
commercial natural gas, geological natural gas, fitting has been made by Watson and co-workers
and liquefied petroleum gas. They performed the (14,16) in their work on data from Portland, OR.
least-squares fit to the hydrocarbon compound Since that study, a number of other applications
concentrattnns using gas chromatography to de- of this approach have been made including Med-
termine the concentrations of eight compounds. ford. OR (171, Philadelphia, PA (18.19), and at a
Their ordinary least-squares source reconciliation number of locations in the U.S. Environmental
algorithm recognized that not all sources may Protection Agency's Inhalable Particulate Net-
contribute to every sample, and, if negative contri- work (20).
butions were obtained, a different configuration of It must be made clear, however, that the CMB
sources was employed with certain qualifying as- analysis works well in these examples because
sumptions (12). Each possible configuration with both the source and ambient samples were col-
positive coefficients was considered and the ote lected and analyzed during the same time period.
with the lowest standard error was chosen as the A much less detailed resolution of lead sources
optimum solution, On the average, automotive was all that was possible in Kellogg. ID 121) when
exhaust was the source of almost 50% of observed on-site samples could not be obtained. In an inter-
hydrocarbons. Gasoline and its vapor contributed comparison study organized by the U.S. Enviroi-
30-30% by weight and the balance resulted from mental Protection Agency [22] to examine recep-
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tor models, a set of ambient particulate elemental proach such as this one to obtain the current
compositional data sets were analyzed by a num- fleet-weighted average. With leaded fuel having
ber of investigators using similar CMB methods, been phased out entirely, the lead and bromine are
The compositions of particles from sources in no longer useful tracers for motor vehicles [231. A
Houston, TX, were not available and were not similar trend will now be starting in Europe as
measured during this program so that source com- lead concentrations are reduced during the next
position profiles had to be obtained from litera- few years
ture sources. The lack of source data immediately Since motor vehicles are an important source of
raised problems in the use of the mass balance particles, it is helpful to know that there may be
methods and comparison of results from different other tracers appearing for automobiles. As part
investigators [221. It is not always certain exactly of the Philadelphia study discussed above, Olmez
which sources should be included in the analysis. and Gordon [24[ identified unusually high values
Although emission inventories may be available of the rare earth elements lanthanum, cerium, and
for the region, it may be that the measured source samarium arising from the catalysis support
composition for a coal-fired power plant in Mary. material from an oil refinery. It is likely that
land burning eastern bituminous coal is not a similar materials arise from the catalytic con-
particularly good representation for a lignite-burn- verters in automobiles and could serve as new
ing plant in Texas. markers for tailpipe emissions.

An additional problem for receptor modeling is The results from Mayrsohn and Crabtree (111
that the motor vehicle profile in the United States and Nelson et al. [13) suggest that a mass balance
is undergoing rapid changes in lead and bromine is applicable for the gaseous aliphatic hydro-
concentrations with time as the new, catalyst- carbons. These species along with CO could possi-
equipped cars, diesel cars and trucks replace the bly provide good tracers for particulate emissions
remaining leaded-fuel burning vehicles. An inter- from highways, Such a result is less likely to be
esting solution to the problem of the changing obtained for more reactive species like olefins.
lead concentration in motor vehicle emissions was There will be problems for semi-volatile species
recently provided by Dzubay et al. [19). They like polycyclie aromatic hydrocarbons (PAHs) be-
obtained particle samples in the summer of 1982 cause of the partitioning of the species between
in Philadelphia, PA and vicinity in the size ranges the gaseous and particulate phases. This problem
of < 2.5 jim and 2.5-10 pm using a dichotomous has been recently reviewed by Pankow [25[. The
sampler. The samples were analyzed using ion sampling and analysis problems of reactive hydro-
chromatography for sulfate and nitrate, X-ray flu- carbons and the modeling needed to account for
orescence (XRF) and instrumental neutron activa- their reactions in transit from source to receptor
tion analysis (INAA) for elemental composition, makes it very difficult to perform accurate recep-
and a thermo-optical method for organic and ele- tor modeling and is an area of study that requires
mental carbon. Because there is also a non-ferrous considerable additional effort.
metal smelter in the airshed, lead in the air comes There are alternative approaches to solving eq,
from incinerators, the smelter, and tailpipe emis- (3). For example, it can be restated as a linear
stons. Using the other measured species in the programming problem. Chseng and Hopke [261
data set, they derived the amounts of lead that have examined the use of the LI norm and linear
could be attributed to all sources other than motor programming approaches suggested by Hoagland
Nehicles. They then used a second multiple regres- [271, Henry et al. (28[, and Henry (29. Cheng and
ston analysis to relate the amount of unaccounted Hlopke [261 found that a weighted, constrained
lead, total lead minus all sources other than Li-norm approach was much more stable that
vehicles, to the motor vehicle source and obtained either ordinary weighted least-squares or effective-
a lead value of 6% lead in motor vehicle emissions, variance weighted least-squares methods at least
It appears that as long as sufficient leaded fuel is for the set of three data sets created for the EPA
still in use, it will be possible to employ art ap- Receptor Model Intercomparison Workshop.
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These data sets are described in detail by Currie et time-consuming to examine particles manually
a]. [30). CCSEM can provide an important additional

These same EPA data sets have also been re- method in the area of receptor modeling. Casuccio
analyzed using non-negative, weighted least- et al. 1371 and Hopke [331 have surveyed the initial
squares methods. In these studies, Wang and applications of CCSEM in the particle elemental
Hopke [311 concluded that these methods do pro- investigation and its ability of identifying particle
vide valuable analysis of the rank of the source sources in the receptor model studies. A number
profile matrix and physically meaningful non- of previous studies have shown that CCSEM is
negative mass contnbutions. However, they sug- capable of detecting the characteristics of individ-
gest that the methods might lead to incorrect ual particles (38,39]. The significant improvement
results if the proper source profiles are not used in of CCSEM is the coupling of a computer to con-
the fitting process. Thus, there are statistical meth- trol the SEM. Hence, three analytical tools are
ods that are useful for extracting estimates of the under computer control in the CCSEM: (1) the
mass contnbutions when both the source profiles SEM, (2) the energy dispersive spectrometry X-ray
and the ambient concentrations are known. How. analyzer, and (3) the digital scan generator for
ever, it is often the case that the measured profiles image processing 1371. CCSEM rapidly examines
are too similar to one another to be successfully individual particles in samples and provides their
resolved. Thus, other methods are needed to in- elemental constitutions as well as their aerody-
crease the amount of information available about namic diameter and shape factors. Based on these
the source and ambient particles, characteristics of each particle, particles can be

This other method is computer-controlled scan- assigned to a number of well defined classes.
ning electron microscopy (CCSEM). The analysis These particle classes become the basis for char-
of microscopic features of individual particles, acterizing sources so that accurate particle classifi-
such as their chemical composition, will provide cation becomes a key step in using CCSEM data
much more information from each sample than in receptor modeling.
can be obtained from bulk analysis. Therefore, the The approach to the particle classification can
ability to perform microscopic analyses on a num- be accomplished by agglomerptive, hierarchical
ber of samples permits the use of CCSEM tech- cluster analysis along with rule-building expert
niques in receptor models. CCSEM is an extension systems. The particles with similar composition
of individual particle characterization by optical are grouped by the cluster analysis. The sample-
microscopy and scanning electron microscopy to-sample difference will be clearly distinguished
(SEM). The microscope has long been employed by comparing cluster patterns of samples. More-
to determine those characteristics or features that over, it is assumed that a source emits various
are too small to be detected by the naked eye. The types of particles. However, the mass fractions of
use of optical microscopy in receptor models has particles in the various particle classes will be
been described by Cruteher 132). Optical micro- different from source to source and are the
scopic investigation of particle samples and its fingerprint for that source. The rule-building ex-
application to source apportionment have been pert system can help automate the particle class
illustrated in detail by Hopke 1331. The ability of assignments. This idea has been confirmed by the
the scanning electron microscope equipped with successful work on the samples collected in El
X-ray detection capabilities (SEM/XRF system) Paso, TX [40* and particles from a coal fired
to provide size shape, and elemental constitution power plant [41). CCSEM analysis of individual
data extends the utility of microscopic examina- particles can apportion the mass of particles to
tions. For example, several studies have used the different sources in the airshed.
SEM in analysis of samples of coal-fired power
plant ash [34,351 and volcanic ash (361. However, 3.3 Illustratve example of CMB analysis
these studies are limited in the number of particles To illustrate the use of the CMB method, an
detected, since SEM has the disadvantage of being example will be taken from the study of Glover et

LA
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al. [421 of the sources of airborne particulate matter dustral city northeast of St. Louis, MO, that has a

in Granite City, IL, With the promulgation of the history of total suspended particulate and airborne

new National Ambient Air Quality Standards for lead non-attainment.
Particulate Matter - 10 ,um (PMIo) - it has The locations of the major industries in Granite

been necessary to review the State Implementation City and that of the ambient airborne particulate

Plan (SIP) in each state for those areas most hkely sampler are shown in Fig 1, the local industries

to be out of complance with the new standard. In include steel mills (American Steel and Granite

Illinois, one such area is Granite City, an in- City Steel), a secondary lead smelter (Terracorp),
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Fig 2. Point source locations in the Greater St. Louis. MO urea,

an aluminum smelter (SCI) and a chemical plant The particle samples were subjected to both
(Jennison Wright). There is also a U.S. Army XRF and INAA in order to provide the input data
Corps of Engineers storage facility located at the for receptor modeling, 48 sample pairs (fine and
edge of town. Fig. 2 shows the location of the coarse) were thus analyzed for 33 elements. Each
major industries in the greater St. Louis Metro- of these samples were then subjected to two CMB
politan area and their location relative to the analyses. For the first analysis, the source profiles
ambient airborne particulate sampler. were taken from libraries available in the litera-

As a part of the studies necessary to prepare an lure. To supplement the source profiles available
effective and efficient SIP, receptor modelng has in the literature, 12 dust samples were collected in
been applied to elemental compositional data for and around Granite City, IL. These were aeroso-
24 h airborne particle samples taken in Granite lized, sampled, and analyzed by XRF and INAA
City by the lll'nois State Water Survey using an to provide site specific source profiles for the
automated dichotomous sampler. This sampler second CMB analysis,
collects particles with an inlet that excludes large In an attempt to account for more of the mass
particles by having a 50% transmission efficiency on each ambient filter, total carbon was measured
for 10 jpm particles. The particles that penetrate seven times during the ambient sampling period.
into the sampler are separated into two aerody- A Sierra PAf15 sampler equipped with quartz fiber
namic size fractions, < 2.5 pm (fine) and 2.5-10 filters was collocated with the dichotomous sam-
pm (coarse). The particles are collected on Teflon pler for this purpose. Each quartz filter was
filters which are then available for chemical analy- analyzed for total PMfo mass and total carbon
sis. mass. After the PA!1 o mass of each filter was

6,!
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determined, the filter was treated with HCI to mass distribution of the particles on each filter

remove any carbonate. Each filter was then were determined along with an elemental analysis

oxidized at 800°C, converting the elemental and of the particles. The CCSEM measurements de-

organic carbon to CO.. The amount of CO2 re- termined that the total carbon was apportioned
leased was measured with a Dohrmann carbon between the fine and coarse fractions by

analyzer. A linear regression was used to relate the Tc,, - 0.919 x TC (6)
mass of total carbon to the total PMlO mass of
each quartz filter. This regression is repiesented TC,. - 0.082 x TC (7)
by The P511 mass on each of the quartz filters was
TC - 0.074 x PAlf, + 3.129 (5) scaled to the PM10 mass collected on the Teflon

where TC and PAfQ are both measured in pg/n. disks. The mass of each pair of fine and coarse

CCSEM (371 was used to partition the total Teflon disks was added to find the total PMjo

carbon measurements between the fine and coarse mass on the Teflon disks. TC,,,, and TCo,, for

fractions. The first and last quartz filters collected the Teflon disks were found by multiplying the

were analyzed by CCSEM. "lhe number distribu- scaling facto- for each sample with eqs. (6) and

tion, physical mass distribution, and aerodynamic (7), respectively.
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3.3.1 Initial chemical mass balance ations at Granite City Steel. This source is located
The initial CMB analysis identified several to the west of the International Mill Service com-

sources of particulate material in the Granite City plex in Fig. 1. The coal-fired power plant identi-
area. Figs 3 and 4 show the identified source fied to the east is Granite City Steels' coking
types for the fine and coarse fraction and the operations while Taracorp's furnaces are the power
direction of each, relative to the sampler, based on plant identified to the southwest. Among the more
the average wind direction during the time of distant source identified was a fertilizer plant
sample collection Fig. 3 shows the regularity of located 5 km to the south of the sampler. The
the limestone and regional sulfate contributions to refinery complex 15 km to the north and the
the fine fraction. Motor vehicle emissions were copper smelter 15 km to the south also appeared
also observed to be coming from the highway to in the initial CMB analysis results. The coal-fired
the north. Besides these fugitive and non-point power plant that was identified to the north of the
sources, tie local steel plants and lead smelters sampler is probably the facility located between
were observed to be major emission sources. Fugi- the Mississippi and Missouri Rivers since there
tive emissions from Granite City Steel appear as are no local sources with similar characteristics in
the urban dust coming from the southeast. The that direction while the oil combustion source(s)
zinc source to the cast is the galvanizing oper- to the southwest are the two oil-fired power plants
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in that direction. The zinc smelter 12 km south of east and southwest, respectively. The coke pile(s)
the sampler was expected to be a major source of identified to the west are at American Steel or
fine zinc. However, the current study did not find Taracorp. American Steel is identified by the zinc
appreciable amounts of zinc coming from the source to the southwest and the coal sources to the
south, west. The oil source to the northwest is the chem-

Fig. 4 shows the predominance of the limestone ical treatment facility for railroad ties at Jennison
and urban dust in the coarse fraction along with Wright.
the local steel and lead sources. Besides the metal The initial CMB analysis results show that the
emissions from the steel plant, the coking oper- composition of air pollution in the St Louis area
ations at Grante City Steel appear as a combina- has changed over the last ten years. Only one fifth
tion of the sulfate emissions and coal-fired power of the fine profiles and one fourth of the coarse
plant profile. As it was found in the fine fraction, profiles used in the first CMB analysis were taken
the galvanizing operation's zinc emissions and the from the profiles derived from the 1975 to 1977
lead smelters combustion source appear to the RAPS results These profiles accounted for 11 and

TABLE t

R' adjusted for degrees of freedom

Sarple Fine fraction values Coarse fraction values

Initial Final Change Initial Final Change
03/09/86 09,78 0976 -0002 0812 0811 -0001
03/17/86 0981 0998 0017 0.959 0995 0036

03/22/86 0919 0921 0002 0947 0992 0045
03/25/86 0981 0985 0004 0683 0837 0.154
04/15/86 0.983 0967 -0016 0683 0837 0.154
04/18/86 0.933 0993 0060 0810 0970 0160
04/21/86 0.949 0.956 0007 0.941 0.950 0009
0$/23/86 0891 0926 0035 0878 0983 0t105
05/23/86 0947 0960 0013 0.797 0982 0.185
05/25/86 0,9S7 0.96 0007 0862 0857 -0005
05/26/86 0.979 0990 0011 0670 0867 0.39",
07/24/86 0.951 0.991 0030 0.981 0991 0010
08/05/86 0878 0.950 0072 0975 0.990 0015
08/10/86 0946 0.940 -0006 0.968 0990 0022
10/18/86 0.991 0958 -0033 0852 0.956 0.104
10/23/86 0800 0871 0071 0931 0971 0040
10/28/86 0949 0964 001S 0970 0995 0025
l1/10/86 0.929 0895 -0034 0.947 0.994 0047
11/11/86 0965 0.967 0002 0.972 0.969 -0003
12/03/86 0812 0848 0036 0.972 0971 -0001
12/07/86 0.802 0843 0041 0805 0,969 0 164
01/29/87 0.985 0.965 -0020 0618 0619 0001
02/01/87 0947 0.972 0025 0.766 0822 0056
05/04/87 0.991 0992 0001 0838 0.974 0.136
05/23/87 0.959 0,988 0029 0999 0.998 -0001
03/25/87 0852 0857 0005 0.742 0827 0,085
06/06/87 0979 0.990 0011 0.911 0955 0044
06/12/87 0.985 0.983 -0002 0.945 0.950 0003

Average 0.936 0 950 0875 0.935
Avg. gain 0023 0073
Avg loss -0016 -0002
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20% of all of the identified fine and coarse mass, increase was especially apparent for the coarse
respectively. The remaining profiles used in the fraction where the average negative change was
current work were taken from more recent pollu- less than one quarter of 1% while the average
tion source studies at various sites throughout the positive change was above 7%. Fig. 5 shows that
U.S. the predicted mass of the fine fraction became

closer to the observed mass with only a slight
3.3.2 Second chenncal mass balance increase in error. (The error in the initial predicted
By including the local dust samples among the results was influenced by the use of an artificial

potential source profiles in the second CMB anal- sulfur component, a source containing only sulfur,
ysis, a marked improvement in the quality of the which caused the initial eror to be fairly low.) Fig.
predicted results was achieved The reanalysis did 6 shows that the predicted mass of the coarse
not change the types of sources identified by the fraction increased while the associated error de-
CMB analysis. However, the apportionment be- creased Fig. 7 shows that the predicted mass of
tween sources varied enough to cause the relative the fine fraction fitting elements changed from an
importance of sources to change. The improve- average over-prediction to an average under-pre-
ment in the results can be seen in Table 1 where diction. Similar results were obtained for the coarse
the average value of the adjusted R

2 
increased for fraction samples Uiter-prediction is the more

both fractions. (The adjustment in the R
2 

values desirable error since during the fitting process, it
was made to account for the number of different is more difficult to explain mass that was not
sources that were identified for each sample.) This observed than to not explain all of the mass that
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had been observed. There are always other un- 4 MULTIVARIATE RECEPTOR MODELS
identified sources that might explain the un-
accounted for mass. 4.1 Introduction

3.3.3 Total carbon results Alternative approaches have been developed
In the CCSEM analyses, carbon was found to for identifying and quantitatively apportioning

be a major component of the fine fraction. How- sources of airborne particles using multivariate
ever, in the CMB analyses, carbon was never fit statistical analysis. Eigenvector analysis has been
well. Lack of carbon information in many of the the principal method that has been applied to
source profiles compounded the problem of hay- airborne particle composition data. An cigenvec.
ing few ambient data. tor analysis tries to simplify the description of a

3.3.4 Conclusions system by determining the minimum number of
new variables necessary to reproduce the mena-

By measuring ambient filters by both XRF and sured attributes of the system. The mathematical
INAA, a relatively complete set of elemental men- basis of these methods has been described by
surements was obtained. The usefulness of these
data was limited by the current unavailability of Hopke 133 .source profiles including these elements. The lack Principal components and factor analysis are
souc datp rbofi s includg tseca plemn The names given to several of the variety of forms of
of data on carbon was a special problem in the eigenvector analysis. It was originally developed
present study since the limited ambient informs- and used in psychology to provide mathematical
tion did identify carbon as being an important models of psychological theories of human ability
part of the fine mass. The inclusion of site-specific and behavior (43). However, eigenvector analysis
profiles in a receptor-oriented source apportion. has found wide application throughout the physi-
ment program improved the overall quality of the cal and life sciences. Unfortunately, a great deal
source apportionment results from those using of confusion exists in the literature in regard to
only literature profiles. While not identifying new the terminology of eigenvector analysis. Various
sources, the site-specific profiles significantly im- changes in the way the method is applied has
proved the R

2 
of the coarse fretion. It also de- resulted in it being called factor analysis, principal

crease the coarse fraction's predicted results error components analysis, principal components factor
values. Considering that the initial fine fraction analysis, empirical orthogonal function analysis,
CMB required a unique sulfur factor to avhieve Karhunen-Loeve transform, etc., depending on
the best fit, the fine fraction results are also an the way the data are sealed before analysis or how
indicatton that the better receptor modeling re- the resulting vectors are treated after the igenvec-
sults are achieved by using site-specific profiles for tor analysis is completed. All of the methods have
fugitive emissions. The collection and analysis of the same basic objective; the compression of data
site-specific fugitive dust profiles should be col- into fewer dimensions and the identification of the
lected, if possible, during the course of future structure of interrelationships that exist between
studies employing receptor models, the variables measured or the cases studied.

In many situations, locally measured source
profiles are not available or there may have been
significant changes in the particle producing activ- 4.2 Aathemnatical procedures
ities in the airshed since the profiles were mea.
sured. Thus, it is helpful to have methods that can The first step in the esgenvector analysis is the
extract infoimation from the ambient data alone calculation of a dispersion matrix, the matrix that
as to the number, nature, and mass contributions contains quantitative information on the relative
of the particle sources in an area. These methods variation of pairs of variables or pairs of samples
use multivariate statistical methods to obtain the (cases). There are two basic types of dispersion
receptor modeling information required, matrices. They are covariance matrices and corre-
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lation matrices. For a correlation matrix, the data structure and to remove some of the noise. The

are scaled such that each variable or each case has objects can then be plotted using the components

an equal weight. The data are not scaled before axes and thus display the features of high-dimen-

calculating covariance In both instances, the data sional data in a few dimensions 1451,

may be centered by subtracting a mean value The compreston of variance into the first fac-

before scaling and the calculation of the matrix tots will improve the ease with which the number

elements. The choice of dispersion matrix depends of factors can be determined. However, their na-

on the nature of the data set to be analyzed. For ture has now been mixed by the calculational

many types of chemical spectroscopic data, the method, Thus, once the number of factors has

covariance matrix is the choise because each varia- been determined, it is often useful to rotate the

ble has the same measurement scale. For many axes in order to provide a more interpretable

geochemical problems, the difference in scale be- structure.

tween major, minor, and trace components re- The axis rotation can retain the orthogonality

quires scaling to avoid domination of the analysis of the eigenvectors or cause them to be oblique.

by the major components. Depending on the initial data treatment, the axes

The dispersion matrix is then decomposed into rotations may be in the scaled and/or centered

a series of orthogonal vectors by the process out- space or in the original variable scale space. The

lined by Joreskog et al. 144] so that latter approach has'proved qoite useful in a num-

ber of chemical applications described by

U'DU - A (8) Malinowski and Howery [46) and in environmen-

tal systems as described by Hopke 133).

where U is the matrix ,f eigenvectors, U' is its

transpose, D is the dispersion matrix, and A is a . Prediou application

diagonal matrix of eignvalues where the trace of

A is equal to the trace of D. If there were no

errors in the data from which D is calculated, the The first modeling applications of classical far-

number of non-zero eigenvalues would be the di- toe analysis were by Prinz and Stratmann [471 and

mensionality of the problem ca.ed the rank of D. Bllfford and Meeker (48]. Prinz and Stratmann

The rank for the original data matrix is the same t471 examined both the aromatic hydrocarbon

as that for the dispersion matrix, However, experi- content of the air in 12 West German cities and

mental error generally results in a number of small data from Colucci and Begeman (491 on the air

but non-zero eigenvalues. The determination of quality of Detroit. In both cases they found three

the number of vectors containing significant infor- factor solutions and used an orthogonal varimax

mation relative to those dominated by noise is rotation to give more readily interpretable results.

often a difficult one. The lack of universally appli- Blifford and Meeker (48) used a principal compo-

cable criteria for determining the dimensionality nent analysis with both varimax and a non-or-

of the data is a major problem in the application thogonal rotation to examine particle composition

of factor analysis. data collected by the National Air Sampling Net-

In the most commonly used approach to caleu- woik (NASN) during 1957-1961 in 30 U.S. cities.

lating the cigenvectors, the maximum amount of They were generally not able to extract much

variance is packed into the first eigenvalue. The interpretable information from their data. Since

maximum possible amount of the remaining vai- there are a very wide variety of particle sources

ance goes into tho second and so forth, This among these 30 cities aid only 13 elements were

compression of the information into a few compo- measured, it is not surprising that they were not

nents permits much of the variation in the data set able to provide much specificity to their factors.

to be displayed in a two- or three-dimensional The factor analysis approach was then reintro-

plot, For many classification problems, the first duced by Hlopke et al. 1501 and Gaarenstroom et

few factors aro able to reproduce most of the data al. 1511 for their analy.is of particle composition
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data from Boston, MA and Tucson, AZ, respec- and effective method to identify problems with a
tively In the Boston data for 90 samples at a data set before it is used for further studies. Prn-
variety of sites, six common factors were identi- cipal component factor analysis can provide useful
fied that were interpreted as soil, sea salt, oil-fired insight into several possible problems that may
power plants, motor vehicles, refuse incineration, exist in a data set including irifcrrect single values
and an unknown manganese-selenium source. The and some types of systematic errors.
six factors accounted for about 78% of the system Gatz [55] used a principal components analysis
variance. There was also a high unique factor for of aerosol composition and meterorological data
bromine that was interpreted to be fresh automo- for St. Louis, MO taken as part of project
bile exhaust. Since lead was not deternuned, these METROMEX [56,571. Nearly 400 filters collected
motor vehicle-related factor loading assignments at 12 sites were analyzed for up to 20 elements by
remain uncertain. Large unique factors for anti- ion-induced XRF. Gatz [55] used additional
mony and selenium were found. These factors parameters in his analysis including day of the
represent emissions of species whose concentra- week, mean wind speed, percent of time with the
tions do not covary with other elements. Subse- wind from NE, SE, SW, or NW quadrants or
quent studies by Thurston and Spengler [52] where variable, ventilation rate, rain amount and dura-
other elements including sulfur and lead were tion. At several sites the inclusion of wind data
measured showed a similar result. They found that permitted the extraction of additional factors that
the selenium was strongly correlated with sulfur allowed identification of motor vehicle emissions
for the warm season (May 6 to November 5). This in the presence of specific point sources of lead
result is in agreement with the Whiteface Moun- such as a secondary copper smelter. An important
tam results [53] and suggests that selenium is an advantage of this form of factor analysis is the
indicator of long range transport of coal-fired ability to include parameters such as wind speed
power plant effluents to the northeastern U.S. and direction or particle size in the analysis.
They found lead to be strongly correlated with In the early applications of factor analysis to
bromine and readily interpreted as motor vehicle particulate compositional data, it was generally
emissions, easy to identify a fine particle mode lead-bromine

In the study of Tucson, AZ [51], whole filter factor that could be assigned as motor vehicle
data were analyzed separately at each site. They emissions. In many cases, a calcium factor some-
find factors that are identified as soil, automotive, times associated with lead could be found in the
several secondary aerosols such as (NH 4),SO4, coarse mode analysis and could be assigned as
and several unknown factors. They also dis. road dust. However, the problem of diminishing
covered a factor that represented the variation of lead concentrations in gasoline discussed earlier
elemental composition in their aliquots of their for the CMB analysis also applies here. As the
neutron activation standard containing Na, C, K, lead and related bromine concentrations diminish,
Fe, Zn, and Mg. This finding illustrates one of the the clearly distinguishable covariance of these two
important uses of factor analysis, screening the elements is disappearing. In a study of particle
data for noisy variables or analytical artifacts, sources in southeast Chicago, IL based on samples

One of the valuable uses of this type of analysis front 1985 and 1986, much lower lead levels are
is in screening large data sets to identify errors observed and the lead-bromine correlation is quite
(54]. With the use of atomic and nuclear methods weak [23]. Thus, the identification of highway
to analyze environmental samples for a multitude emissions through factor analysis based on lead or
of elements, very large data sets have been gener- lead and bromine is becoming more and more
ated. Because of the ease in obtaining these results difficult and other analytic species are going to be
with computerized systems, the elemental data needed in the future.
acquired are not always as thoroughly checked as A problem that exists with these forms of fac-
they should be, leading to some, if not many, bad tor analysis is that they do not permit quantitative
data points. It is advantageous to have an efficient source appointment of particle mass or of specific

ik
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elemental concentrations. In an effort to find an review of the literature. A comparison of the ac-
alternative method that would provide informa- tual mass fractions with those calculated from the
tion on source contributions when only the am- TTFA results shows that the TTFA provided a
bient particulate analytical results are available, good reproduction of the mass distribution and
Hopke and co-workers [58-64] have developed source apportionments of the street dust that sug-
target transformation factor analysis (TTFA) in gest that a substantial fraction of the urban road-
which uncentered but standardized data are way dust is anthropogenic in origin
analyzed. In this analysis, resolution similar to One of the principal advantages of TTFA is
that obtained from a CMB analysis can be ob- that it can identify the source composition profiles
tained. However, a CMB analysis can be made on as they exist at the receptor site. There can be
a single sample if the source data are known while changes in the composition of the particles in
TTFA requires a series of samples with varying transit from the source to the receptor and ap-
impacts by the same sources, but does not require proaches that provide there modified source pro-
a prion knowledge of the source characteristics, files should improve the receptor model results.
The objectives of TTFA are (1) to determine the Chang et a). 1631 have applied TI'FA to an exten-
number of independent sources that contnbute to sive set of data from St. Louis, MO to develop
the system, (2) to identify the elemental source source composition profiles based on a subset
profiles, and (3) to calculate the contribution of selection process developed by Rheingrover and
each source to each sample. Gordon [67I. They select samples from a data base

One of the first applications of TTFA was to that were heavily influenced by major sources of
the source identification of urban street dust 159. each element. These samples were identified
A sample of street dust was physically fractionated according to the following criteria:
by particle size, density, and magnetic susceptibil- 1, Concentration of the element in question X>
ity to produce 30 subsamples. Each subsample X + Z, where X is the average concentration
was analyzed by instrumental neutron activation of that particular element for each station and
analysis and atomic absorption spectroscopy to size fraction (coarse or fine particle size frac-
yield analytical results for 35 elements. The num- tion), Z, is typically set at about three for
ber of sources is determined by performing an most elements, and is the standard deviation of
eigenvalue analysis on the matrix of correlations the concentration of that element.
between the samples. A target transformation de- 2. The standard deviation of the 6 or 12 h average
ternenes the degree of overlap between an input wind directions for most samples, or minute
source profile and one of the calculated factor averages for 2 h samples, taken during intensive
axes. The input source profiles, called test vectors, periods is less than 20'.
are developed from existing knowledge of the Samples that are strongly affected by emissions
emission profiles of various sources or by an itera- from a source were identified through observation
tive technique from simple test vectors (631. The of clustering of mean wind directions for the sam-
ideatifed source profiles are then used in a simple pling periods selected with angles pointing toward
weighted least.squares determination of the mass the source.
contributions of the sources [62). A number of studies of multivariate receptor

In the analysis of the street dust, six sources models have used the data base from the Regional
were identified including soil, cement, tire wear, Air Pollution Study (RAPS) of St. Louis, MO. In
direct automobile exhaust, salt and iron particles, the RAPS program, automated dichotomous sam-
The lead concentration of the motor vehicle source piers were operated over a 2 year period at 10 sites
was found to be 15% with a lead-to-bromine ratio in the St. Louis metropolitan area. Fig. 2 shows
of 0.39. This ratio is in good agreement with the the location of the 10 RAPS sampling stations.
values obtained by Dzubay et a]. [651 for Los Ambient aerosol samples were collected in fine,
Angeles, CA freeways and in the range presented < 2.4 pm, and coarse, 2.4-20 p~m, fractions. Sam-
by Harrison and Sturges [661 in their extensive pies were analyzed at the Lawrence Berkeley

LAi iriI. ,iI



I
Chcmometnes and intihgent Laboratory Systems m

Laboratory for total mass by beta-gauge measure. 4.4 Illustrative example
ments and for 27 elements by XRF. ,The RAPS
database contains results for almost 35000 sam-
pies. 4.4.1 Data descriptionRheingrover and Gordon [671 screened the In order to demonstrate the use of TTFA forRAPS database according to the criteria stated the resolution of sources of urban aerosols, TTFAabove. With wind trajectory analysis, specific will be applied to a compositional data set ob-emission sources could be identified even in eases tained from aerosol samples collected during thewhere the sources were located very close together RAPS program in St. Louis, MO (601. The data[671 A compilation of the selected impacted sam. for the samples collected during July and Augustpies was made so that TTFA could be employed 1976 from station 112 were selected for the TTFAto obtain elemental profiles for these sources at process. Station 112 was located near Francisthe various receptor sites. Field, the football stadium on the campus ofThus, TTFA may be very useful in determining Washington University, west of downtown St.the concentration of lead in motor vehicle emis, Louis, MO.sion as the mix of leaded fuel continues to change, During the 62 days of July and August, filtersMultivariate methods can thus provide consider. were changed at 12 h intervals, producing a totalable information regarding the sources of particles of 124 samples in each the fine and coarse frac-including highway emissions from only the ant- lions. Data were missing for 24 pairs of samplesbient data matrix. The TTFA method represents a leaving a total of 100 pairs of coarse and fineuseful approach when source information for the fraction samples. Of the 27 elements determinedarea is lacking or suspect and if there is uncer. for each sample, a majority of the determinationstainty as to the identification of all of the sources of 10 elements had values below the detectioncontributing to the measured concentrations at the limits. Since a complete and accurate data set isreceptor site. required to perform a factor analysis, these 10Further efforts have recently betn made by elements were eliminated from the analysis. ForHenry and Kim (68J on extending eigenvector example, arsenic was excluded because almost allanalysis methods. They have been examining ways of the values were below the detection limits.to incorporate the explicit physical constraints that Arsenic determinations by XRF are often unrelia.a.e inherent in the mixture resolution problem ble because of an interference between the arsenicinto the analysis. Through the use of linear pro- K X-ray and the lead L X-ray. A neutron activa.gramming methods, they are better able to define tion analysis of these samples would produce be-the feasible region in which the solution must lie. tter arsenic determinations. Reliable data for ar-There exists a limited region in the solution space senic may be important to the differentiation ofbecause the elements of the source profiles must coal flyash and crustal material; two materialsall be greater than or equal to zero (non-negative with very similar source profiles. The low per.source profiles) and the mass contributions of the centage of measured elements can lead to distor.identified sources must also be greater than or tlions in the scaling factors produced by the multi.equal to zero. Although there has only been limited pie regression analysis. The remaining mass con-applications of this expanded method, it offers an sists primarily of hydrogen, oxygen, nitrogen, andimportant additional tool to apply to those sys. carbon. Although no measurements of carbon aretems where a priori source profile data are not included in the RAPS data, that portion of theavailable. These methods provide a useful parallel sample mass must still be accounted for by theanalysis with CMB to help insure that the profiles resolved sources. In order to produce the bestused are reasonable representations of the sources possible source resolutions, it is vital to have accu-contributing to a given set of samples. rate measurements of the mass of total suspended
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particles (TSPs) as well as determinations for as TABLE 3
many elements as possible, Refined source profiles for the 4 source solution at RAPS Ste

The fine and the coarse samples were analyzed 12 July-August 1976
separately and only the fine-fraction results will Element Motor Sulfate Flyast/ Fireworks
be reported here. In this target transformation vehicle soil
analysis, a set of potential source profiles was At 3. 0.9 62. 60
assembled from the literature to use as initial test s 00 28 140 00
vectors. In addition the set of unique vectors was S 00 232. 14. 26
also tested CI S.2 16 0 31 19.

K 0.0 006 43, 580
Ca 12. 0006 17. 027

4.4.2 Results T 2 9 is 2 3 00
The eigenvector analysis provided the results Mn .5 01t 08 36

presented in Table 2 Examination of the eigen- Fe 5 8 3 8 38. 9.
vectors suggests the presence of 4 major sources, Na 02 006 00 03
possibly 2 sseak sources, and noise. To begin the Cu 1.9 02 003 46Zn 9 8 1,4 0 0 24.
analysis, a 4-vector solution was obtained. The Se 0i 01 00 o0
iteratively refined source profiles are given in Ta- Br 26, 00 2.7 2,
ble 3. The first 3 vectors can be easily identified as St 00 00 09 12
motor vehicles (Pb, Br0 regional sulfate, and Ba .45 0.3 08 13.
soil/flyash (Si, Al) based on their apparent ele- Pb 105 8, 38 00

mental composition.
However, the fourth vector showed high K, Zn,

Ba, and Sr was not initially obvious as to its without the July 4 and 5 samples included It can
origin. The resulting mass loadings were then be seen that these two samples from July 4 and 5
calculated and the only significant values were for from 100 sample set have changed the average
the sampling periods of noon to midnight on July value of K by a factor of 2 and the average Sr by a
4 and midnight to noon on July 5. This was July 4,
1976 and there was a bicentennial fireworks dis-
play at this location. Thus, these two highly in- TABLE 4
fluenced samples change the whole analysis. Com atRsoS of dais 'Jul and Augthut samples from Juty 4 and

To illustrate this further, Table 4 gives the 3. RAPS Stasos tt2. July and Angust 1976 fine tracton
average values of the elemental composition of the Element MeantS D. (ngm)
fine fraction samples for the samples with and With Without

At 220 1 30 200 ± 30
SA 4.0:± 60 450 ± 60TABLE2 S 4370 :L310 4360 ±320

Results of rigenvector analysis of July and August 1976 fine Cl 90 . t0 80 ± 9
fiaction data at Site 112 in St. Louis, MO K 320 ±-130 150 : 9

Ca 110 :± 10 110 t 10
Factor Eigenvalue x' Eaner Average Ti 63 ± 13 64 : 13

%error Mn 17 :t 3 17 t 3
1 90. 210 0.324 204 Fe 220 1 20 220 ±k 20
2 50 156 0214 164 Ni 2.3 ± 0.2 2.3± 02
3 1.7 65 0.141 129 Cu 16 1 3 15 t 3
4 1.3 63 0064 93 Zn 78 tt 8 75 ± 8
5 0.16 55 0047 72 Se 2.7± 02 2,7± 02
6 009 26 0034 68 Bt 140 ±9 130 :t 8
7 003 24 0027 67 Sr 5 4 1.l± 01
8 002 24 0021 58 Ba 19 1 5 15 3 4
9 002 15 0016 49 Pb 730 ± 0 720 ±s0
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TABLES ence of a motor vehicle source, a sulfate source, a
Results of eagenvector analysts of July and August 1976 fine soil or flyash source, a paint-pigment source, and
fraction data at Ste 112 in St Lou. MO excludingJuly4and a refuse source. The presence of the sulfate,
5 data paint-pigment, and refuse factors was determined

Factor Egensalue X
2  

Exer Aerag, by the uniqueness test for the elements sulfur,
% error titanium, and zinc, respectively. In the paint-pig.

1 87, 210 0.304 197 ment factor, titanium was found to be associated
2 49 152 0.304 197 with the elements sulfur, calcium, iron, and
3 2.0 57 0070 123 barium. This plant used iron titanate as its input
4 02 42 0050 93
5 02 26 0037 93 material and the profile obtained in this analysis
6 0.1 25 0029 69 appears to be realistic. The zinc factor, associated
7 002 26 0023 69 with the elements chlorine, potassium, iron, and
8 002 17 0019 67 lead, is attributed to refuse-incinerator etmssions.
9 0.01 16 0015 53 However, a high chlorine concentration is usually

associated with particles from refuse incinerators
[69,70. This factor might also represent particles
from zinc and/or lead smelters.

factor of 5. Thus, TTFA can find strong, unusual The results of this analysis provide quite rea-
events in a large complex data set After dropping sonable fits to the elemental concentration and to
the samples from July 4 and 5, the analysis was the fine mass concentrations for thts system. Thus,
repeated and the results are presented in Table 5 the TTFA provided a resolution of source types
Now there are 3 strong factors, 2 weaker ones, and and concentrattons that appear plaustble although
a continuum. Thus, a 5-factor solution was sought. specific sources are not tdentified and quantita-
These results are presented in Table 6. lively apportioned. From other studtes with other

The target transformation analysis for the fine data sets, it appears TTFA is typtcally able to
fraction without July 4 and 5 indicated the pres- identify 5 to 7 source types as long as they are

reasonably distinct from one another.

TABLE 6

Refined source profiles (m8 g). RAPS Station 112. July and
August 1976, fine fraction wthout July 4 and 5 5 SUMMARY

Element Vehicle Motor Sott/ Paint Refuse
sulfate flyash In this paper, several of the active areas of

At 1, t.t iS. 00 00 receptor modeltng have been introduced. Their
S1 00 1.9 130. 00 7. ability to determine the sources of particles in the
S 02 240. 9. 6. 00 air can be very useful in developing air qualtty
CI 2.4 1.1 00 6 2. management strategies and can potentially be-K 14 16 15. 5.7 48,

Ca II 00 16. 34. 1.2 come enforcement tools as well. Since receptor
Ti 00 0.7 2.5 It0. 00 models must of necessity be retrospective in na-
Mn 00 00 0.7 4.8 86 ture, another important use can be in the calibra.
Fe 00 1.1 36. 90 36. tion and testing o( the prognostic dispersion mod-
Ni 008 004 0042 0011 0.7 els so that predtction of changes in air quality can
Cu 06 001 00 00 8,7
Zn 08 00 00 3.7 65, serve as a more reliable basis for management
Se 0.1 0.1 0o1 02 02 decisions. The field of receptor modeling has
Br 30, 03 2.5 00 005 grown and developed rapidly during the last
S( 009 001 0.15 01 0001 several years and can be expected to continue to
Ba 0.7 0035 007 28. 05 do so as methods are improved and new applica-
Pb 107. 6.5 5. 00 46. tions discovered.

-lions -tscv-r
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Abstract

Gleser. I.J 1991. Measurement error models. Chemomeirrts and Inteligeni Laboratory Sstems, 10. 45-57.

An overiew is given of hnen measurement error models. Such models appear in many forms, including errors-in-vanables
regression and factor analysis, but ate mathomatically related t each other. Of particular interest to chemists are mass balance
receptor models in ohch ssource profiles are estimated with error. A general model is given for errors in profiles, and the attention of
chemists is directed toward recent advances in statistical model fitting and numencal analysis which may be of use in estimating
source cuntnbutions.

I INTRODUCTION methods, and related computer software, is given
in Section 3. Particularly emphasized is an ap.

Measurement error models have been applied proach, called 'correction for attenuation' by psy-
in virtually every area of science and technology. chometrtcians, which adjusts classical regression
Perhaps most familiar to chemists are the models estimators (which ignore measurement errors in
of factor analysis and errors-in-variables regres- the predictor variables) for errors in the predic-
sion models, in which the predictors (independent tors. Besides permitting use of standard al-
variables) are observed subject to random errors gorithms (both classical and more recent robust
of measurement, methods), this approach also has the merit of

Although measurement error models can be focusing the attention of users on ways to obtain
either linear or nonlinear, in the present paper and use available information about the sources
attention is confined to linear measurement error and magnitudes of the measurement errors.
models. Section 2 introduces such models, indicat- In environmental studies, chemists have used
ing the wide variety of mathematical forms in both factor analysis and errors-in-variables regres-
which these models can be stated. Some basic sion (which they :all effective variance calcula.
concepts, principles and terminology are intro- tion) to identity source contributions to environ-
duced, with the goal of facilitating access by mental pollution (1. The statistical models used in
chemists to the broad statistical literature dealing these contexts stem from linear mass balance
with methods for fitting and analyzing measure- equations that relate the concentrations of certain
ment error models. 'aerosol properties' (e.g., chemical compounds) at

A brief survey of available statistical estimation a receptor to the total mass contributions from the

0169-7439/91/$03.50 0 1991 - Elsecier Science Publishers 13.1.
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sources. These appheations will be used throughout geometric description of the model in an algebraic
the paper as concrete examples of linear measure- (parameterized) form are the following
ment error models. In Section 4, some suggestions Af, + a, / 1 (2)
for possible improvements in the models. and y a

methods of statistical analysis used in this area (y (B a
will be presented. ,' y, Y" + 0)' + ( z .... n (3)

Ay=, im 1,2,..., n (4)
In eqn. (3), i, is the r-dimensional identity matrix.

2 LINEAR MEASUREMENT ERROR MODELS The model (2) is the familiar model of factor

analysis. The columns of the in X r factor loading

Measurement error models have in common matrix A are a basis for the hyperplane .Y', while
their attempt to describe situations in which the the factor score vectors f, contain the coefficients
variables Y observed (denoted by capital letters) representing each y, as a linear combination of
are of interest only because they reflect certain the basis elements (columns of A).
unobservable, or latent, variables y (denoted by The model (3) is the model of errors-in-vari-
corresponding lower case letters) that are mea- ables regression. Here, r elements of each y, serve
sured by Y subject to random error. That is, as predictor (independent) variables for the re-

maining in - r variables. By renumbering compo-
Y - y + e nents, we can allow the predictor variables chosen

to form the r-dimensional subvector y,2 containing
where e is a random error of measurement having the last r elements of y, The slope matrix B.
mean 0 and distribution functionally unrelated to (n - r) X r and intercept vector a are basic
the value of y. For the ith experimental unit or parameters of the model.
time period, we may have obtained measurements Model (4) is a more symmetric way of writing a
y i ... ' on in latent variables yi(),.. . y'), set of linear equations relating the elements of j,,

SI. n. Let F, - (Y t
)
.  

Yt '))' and )y - in that no distinction is made between indepen-
(t)~,...y ))' be n-dimensional column vectors dent and dependent variables (as was done in
containing the obse~ved and latent variables, re- model (3)). This model is often referred to as an
spectively. Then implicit linear functional relationship model. The

cofficient matrix A, which is (in - r) X in and
Y, y, + e, i n ...... . . (1) has full rank i- r, and the vector y are basic

parameters of the model.
where the vectors e, of measurement errors have Model (4) often results from consideration of
mean vector 0 and distributions functionally unre- families of simultaneous stochastic equations. In
lated to the values of the latent variables ),. It is such models, observations X,, j = 1..., J, are
usually assumed that the error vectors e, are inde- made at each of T time points I. It is assumed
pendently distributed, that these observations satisfy a set of linear equa-

In a linear measurement error model, the ele- tions
ments of each latent vector y, are assumed to
satisfy a common set of linear relationships. Geo- 1
mscically, this means that the ys, represented as a1 i-1. I (5)
points in n-dimensional space, all lie in a hyper- -
plane X of dimension r, r <in, passing through where (f, ...... ji)' mL are independent random
an origin a. The dimension r of .X1" can be either vectors having mean vector 0 and a common dis-
known or unknown; in the latter case, r is a basic tribution. The X, are quantities internal (endoge-
parameter of the model. nous) to a given system (in econometrics, an eco-

Three commonly used ways to restate the above nomic system), while the /, represent random
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influences external (exogenous) to the system that and obtain the least squares estimators 6, j of the
account for the linear combinations on the left intercept and slope. A new observation Z is ob.
side of eq (5) not being exactly equal to 0. If tained, and we wish to estimate the value of W
J < 1, and the matrix A = ((a,,)) has full rank J, that led to Z. Then
we can renumber indices so that

A -(A,,A2), Ai:JXJ of rank J oJW ~ fe,'

M + le3

and then (5) becomes
has the form of a measurement error model with
Y = (Z.a, ,i)'v,y -(a +fW, a, fl)'. One way

or to represent the linear restriction is in the form

Z - -A A W,+A 'f, (4)

m \VW,+f,*, t -.... T (6) (1,0,- W)yin

Using classical multivariate linear regression
methods, we can find an estimator fI of 1I. To Calibrations, and thus calibration models, areestimate the original matrix A of coefficients, it is widely used in the physical sciences and engineer-

necessary to impose restrictions. This is usually mg [5,6]. Although most calibrations involve
done by identifying certain of the a,, as being estimation of a single predictor W from a single
equal to 0. Such restrictions on A2 imply that dependent variable Z (perhaps on many occa-
certain elements of AflI = A2 are zero. Since A, is sions), multivariate calibration models are also

unknown, this results in an implicit linear fune- used [7,81 The calibration literature tends to em-

tional relationship model for . Here, the col- phasize methods based on classical linear (or ap.
umns of t become the observed V, and the proximately linear) multiple regression models, so
columns of Hl are the latent vectors j,,. Thus, the that the connection to measurement error models
model (4) is applied to estimated regression slope is not widely known. Consequently, the calibra-
matrices in a classical regression model. It is in tion and measurement error model literatures have
this manner that measurement error models often tended to develop in parallel.
appear in the econometrics literature. The poten- It should be added that predictor variables in
tial application of similar stochastic equation the physical sciences, and also the medical and
models (5), and the resulting linear measurement behavioral sciences, are often measured indirectly
error models (4), in chemistry and other physical through calibration. This is a source of meastre-
sciences should be apparent. In these models some meint error in regression experiments that is fre-
of the X, variables can be measurements of van- quently overlooked, at the cost of a possibly sub-
ables obtained at times prior to I (that is, lagged stantial bias in conclusions [9j. On the other hand,
values), in which case (5) has the form of an calibration experiments provide a useful way to
ARIMA time series model. A thorough discussion assess measurement errors in predictors (Section
of linear simultaneous stochastic equation models, 3).
and the related linear measurement error models, In mass balance models, two distinct appliea.
can be found in refs. 2-4. tions of linear measurement error models arise.

In calibration models, estimated regression First, we may have measurements C, of con-
slopes can again serve as observed variables, with centrations of 'aerosol property' i at a receptor at
true slopes acting as latent variables, For exam. time t for m properties (i= 1.I., i) and T times
ples, suppose that we fit a linear model (t- 1., T). The true concentrations c, are

thought to result from the mass contributions s.,
Zj+/W+e, i1...k of r sources, as represented by the linear mass
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balance model: This model has the errors-in-variables regression
I form (2) with the slope matrix B giving the mass

c'= a,s,,, A= 1_ ... m; i I.... T contributions s,. ..... r, of the sources. Again,
the intercept a in model (2) does not appear since

(7) all measured variables are centered at their sample

Letting means.

Y, - (C ,..... c,) - 3, .... e. 7,)1 2 Model uniqueness

, ( ...... s,,)'. A= ((a,,))

we have the factor analysis model Although the idea of linear relationships among
the latent variables is intuitively clear (with a

Y',=-j+e,, E(e,)=0, y-AL. (8) concrete geometric interpretation), each of the

The intercept term a in model (3) does not appear models used to represent or parameterize the idea
here since it is usually assumed that all variables has elements of arbitrariness. First, note that the
are centered at their sample means (The variables parameterizations in two of the models [(2) and
are also usually standardized by their standard [4)] that we have described are not uniquely de-
deviations - a practice about which we will have fined. For example, in the factor analysis model
more to say later.) In applications of this model, (2), we can replace A by A* = AT and f, by
the coefficients a1, of the mass balance equations f,* =T ij for any r-dimensional invertible ma-
and the number r of sources are usually assumed trx T without changing the validity of the model
to be unknown.

A second application of linear measurement fAL + aATT f, + a A** + a
error models to mass balance problems occurs (Since the columns of A are a basis for the hyper-
when w~e know the number r or sources, and also plane H1, and bases of vector spaces are not unique,
have unbiased measurements (or other similar this fact should not be surprising) In the litera-
prior information) for the coefficients a,, in eq. ture, ilus nonuniqueness problem is called factor
(7). Here, only one measurement in time is usually indeterminacy. One can impose restrictions on A
taken, so that the 'aerosol properties' are treated (and possibly other parameters of the model) to
as experimental units. That is, it is assumed that remove this indeterminacy, but such restrictions
we observe are exterior to the model (and data) and cannot be

C, tested. Indeed, it is common for one set of restric-

tions to be imposed for computational conveni-
Ys ,i 1. ence (usually to reduce the estimation problem to

a type of principal components analysis), and then
A,, for investigators to search among the set of equiv.

where alent parametertzations of the fitted model for one
which has meantng in the given context. (For

C, e C, ~example, the program VARIMAX searches to find
An an et2 (9) permissible loadings X,, in A with maximum var-

Y +ability - either X,i is near 0 or very large.) The

ii ~,extra searching that such exploratory factor analy-,I,, a, l di A sis methods do among equivalent parameteriza-
E(e,j) -0, j-I,.., r + 1, and tions of the model (2) in the attempt to find a

Ia,, 'meaningful solution' is not accounted for by

e B i , i-1., customary indices of accuracy (large-sample vari-
a I ances and covariances of the estimators). It is

B- t 1a0, entirely possible for two investigators starting with
B ,, (s ..... s,) (10) the same data and the same initial solution for the
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parameters to arrive at quite different 'meaningful contrast the uniqueness of the hyperplane .X'
solutions' (final fitted models). In confirmatory which geometrically describes the linear relation-
factor analysis, on the other hand, a set of restric- ships among the elements of the latent vectors y,
tions is imposed a'priori (usually based on previ- it is natural to try to parameterize X directly. One
ous experience with the variables being studied), way to do this is by the angles 0, J - I. m - 1,
regardless of computational convenience, and then between the hyperplane X." and any m - 1 of the
such a model is fitted, and also tested against m axes in m-dimensional space. This approach is
other less restrictive models (particularly models mentioned in ref. 11, where it is applied in the
allowing a larger number of factors), case m - 2, r - 1 (a linear relationship between

Similar comments about indeterminacy apply two latent variables). However, generalizations to
to model (4). Here, the coefficient matrix A and general m, general r, appear to be computation-
the vector y can be replaced by AA and Ay, for ally and analytically difficult. Further, the angles
any (ni - r)-d', -nsional invertible matrix A, 0 are not in themselves usually of intrinsic inter-
without affecting the validity of the equation est.
defining the model. Again. restrictions needed to
identify the parameters cannot be tested by the 2.2 Identifiability
given data.

By imposing suitable extra-model restrictions, Apart from questions of uniqueness of para-
one can reduce both model (2) and model (4) to meterization, there is also the problem of identify-
the errors-in-variables regression form (3). (This is ing the linear relationships from data. This is
intuitively clear from the fact that all three models caused by the fact that we do not directly observe
describe the same geometric assumption that the the latent variables ,, but instead observe Y -. r
latent vectors y, lie in the hyperplane X,".) Verifi- + e. Linear associations (covariance) among the
cation of this assertion can be found in refs. 3 and elements of the error vectors e, can thus be mis-
10. However, even model (3) requires prior sep- taken for (confounded with) linear relationships
aration of the elements of y, into a vector of among the elements of y, since both types of
predictor (independent) variables Y.2 and a vector association can result in covariatton between ele-
of dependent variables .,. In the factor analysis ments of the observed Y. Consequently, assump-
model (2), this also means that the factors f, are tions about the form of the joint distribution of
identified with certain of the components of y. the elements of the error vectors, e is required in
Where there is a natural such separation of varia- order to identify the linear relationships of interest
bles (such as in the second mass balance model (9) (among the elements of the latent vectors Y,).
and (10) above), it is then reasonable to prefer the Because normal distributions are determined by
model (3), since the parameters B and a are their mean vectors and covanance matrices, this
uniquely defined by the model. However, in other problem of identifiability always arises for nor-
contexts, this violation of the symmetry of the mally distributed Ys. Interestingly, only normal
relationships among the variables causes experi- distributions suffer from this problem, since infor-
menters some concern. For example, if it were mation about latent linear relationships can other-
actually the case that y, - (yti ( t21, jP))', r - 2, wise be obtained from higher moments or cumu-
and y, 

2)  
Syt 

O
, and we chose ., m (y,t)), ,2 - lants of the distribution (12,13). Thus, normal

(.,11, y(')' in model (3), we would not be able to distributions in measurement error models play
recover the linear relationship among the eleitents the unusual role of the most 'nonrobust' or
of y,. Nevertheless, it is always true that model (3) 'worst-case' distribution (in contrast to their
for some choice of X,, .Z yields one of the 'best-case' role in most other types of inference).
permissible (equivalent) solutions (fitted models) Because use of sample higher moments or eumu-
for models (2) and (4). lants in estimation is computationally cumber-

Observing tI.. arbitrariness involved in para- some, adds a large component of variability to
meterizing the models (even model (3)), and in estimates, and also requires knowledge of which
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moments or cumulants to use, the problem of separately, and it is reasonable to assume that the
nonidentifiability in normal distributional cases regression slopes of the ea1 on the e,2 are zero.
(because it reflects on any procedure based on
sample mean vectors and covariance matrices) is 2.3 Structural and functional models

also relevant even to situations where we are cer- An important distinction that is made in the
tain the data are not normally distributed, statistical literature on measurement error models

Basically, in normal distributional cases, linear is between models in which the latent vectors y,
relationships among the elements of y cannot be are treated as unknown constants (functional
identified (consistently estimated) without knowl- models), and models in which the j are assumed
edge about the error covariance matrices to be independent random vectors (structural

models). In the former case, the yr are themselves

E= Cov(e,) parameters of the model. The fact that the number
of such parameters increases as the sample size r
increases causes major problems for statistical the-

of the error vectors e,. This knowledge can either ory. For example, maximum likelihood estimators
come from parametric assumptions about the Z,, for the parameters of functional measurement er-
or from independent estimates of these matrices ror models need not exist [16,171; or if they exist,
obtained from other experiments (calibration data) need not be consistent. No completely satisfactory
or replications of Ys for fixed .s - that is, large sample optimality theory exists for func-

tional measurement error models.
Y + e, j 1.....J In contrast, structural measurement error mod-

els are typically parameterized by a finite number

of parameters. Consequently, classical statistical
For factor analysis models. the classical as- theory (e.g., the theory of maximum likelihood

sumption made is that the Els are all equal to the estimation and likelihood ratio tests) can be ap-
same diagonal matrix. This diagonahty assump. plied. Even so, some problems remain: coin-
tion is usually justified by the belief that choice of plicated finite sample distributions, nonexistence
a large enough value of r (the number of factors) of all moments of the maximum likelihood estima-
removes all common sources of variation from the tor, etc. For example, in a strict mathematical
errors, sense, finite-length I - a confidence intervals for

For errors-in-variables regression models, a the parameters of linear measurement error mod-
wide variety of assumptions about the Es have els ((2), (3) or (4); structural or functional cases)
been used, and software packages exist to fit many do not exist [18). Commonly used confidence in-
of these models [14). The sensitivity of the result- tervals (e.g., large-sample intervals) have arbi-
ing estimates to the assumptions used is still an trarily small coverage probability when the mea-
open question, although some information is surement error variances are very large relative to
available for the simple case r - 1. Common to all the spread of the true latent variables. (See ref.
of these assumptions is the basic requirement that 18a for exact results in the case r - 1 of model
the regression slopes of the elements of e,, on the (3).) Fortunately, this theoretical result has
elements e,2 are known [15). Here, e~i contains the minimal importance in most physical science ap-
errors in the observations Y, of the latent depen. plications because practitioners usually have some
dent vectors ja, and e2, contains errors in the idea of the magnitudes of the measurement errors
observations Y2, of the latent independent vector (and error variances) in their experiments. If not,
y,2. This requirement is clearly essential, since some useful checks to verify that large-sample
otherwise such regression slopes will be con- confidence intervals have desired coverage prob.
founded with the matrix B in model (3). In most ability are available (see ref. 19, pp. 1134-1135).
applications of errors-in-variables regression mod- Alternatively, the Creasy-Fieller method of con-
els, the measurements of Y,, and of Y2, are made structing 1 - a confidence regions [20,21) can be
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used, although such regions will not always be servations Y. Since the latent variables , areintervals, random, and the model (1) assumes that the (con.The distinction between functional and struc- ditional) distribution of e, does not depend on(ural measurement error models is sitmlar to the it follows that e, and ., are statisttcally indepen-distinction between fixed (designed) factors and dent. Thus,
random factors in the analysis of variance, In
most contexts where factor analysis models are Cov(y,) - Cov(y1 ) + Cov(e,)
used, investigators are willing to assume that the where the assumption that X, varies in an r.dt-factors f (and thus the latent vectors ,) are mensional subspace Y of rn-dimensional spacerandom - for example, in the first mass balance implies that Cov(Y,) is singular of rank r. Formodel discussed above, the factors f, represent example, in the factor analysis model (2),mass contributions from the sources and might
reasonably be assumed to vary randomly over Cov(Y1) -A*A'+D, (I1)
time. On the other hand, one would be less certain where + is the (common) covarlance matrix of thethat the proportions of mass a,1 from the r sources factor vectors fi (which are random because y, iswould vary randomly across, aerosol properties' i random) and Do - diagonal (8,, 02 .. ,,,) is thein the second mass balance model. Such latent common covariance matrix of the error vectors e,.variables seem to be fixed characteristics of the A very popular general computer program for'aerosol properties'. Consequently, this second fitting multivariate covariance structure models ofmass balance model appears to be a functional reduced rank is the program LISREL VI 124), Thismeasurement error model, program also provides estimated large-sampleNevertheless, arguments given in ref. 22 show variances and covarianes for the resulting estima.that for every functional model one can construct tors, and tests of fit for models of various ranks r.a similarly parameterized structural model. Using There is a substantial literature dealing with spe.this structural model, one can more easily de. cial problems connected with this software (andtermine restrictions insuring identifiability for the method of estimation). Many of the relevantkey parameters of both models (structural and papers appear in the journal Psychomcrsrika, al.functional). Further, the maximum likelihood though some significant papers in this area-alsosolution for the structural model (which is the best have appeared in such journals as Bio.eirika,asymptotic normal estimator of the parameters in South African Statistical Journal, and the Annals ofthat model) is typically also the best asymptotic Mathematical Statistics. Although LISREL VI as.normal estimator of the corresponding parameters sumes that the data vectors Yj are normally dis-in the functional model (22,231. Consequently, even tributed, the large-sample properties of the estima.when one believes that one has a functional linear tors hold for certain nonnormal distributions, andmeasurement error model, it is worth while start- methods exist for adjusting the estimators anding one's statistical analysis by studying idcntifi- tests for elliptical distnbutions with heavier tailsability and choice of estimators for the Corre- than the normal (25).sponding structural model. An additional ad- LISREL VI is available as part of the SPSSvantage of adopting structural model assumptions statistical software system, or as an independentis that natural estimators (predictors) of the latent program. A similar program, ISU FACTOR 126).variables y, based on the observed values Y# can can be used with the SAS statistical softwarebe defined. These are the conditional expected system.values E[y,1I1]. One common misconception that users of fac-

tor analysis computer software programs have is3 FSTIMATION AND SOFTWARE that the sample correlations of the Y can be used
in place of the sample covariances without effect.A structural linear measurement error model ing the estimates (particularly in large samples).yields a covariance structure model for the ob. This is incorrect (3,16). Although use of sample

!II. .. .. .. . ... .
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correlations removes the problem of choice of extremely large estimates, or not to converge at
scale for the data, the model actually fitted is not all).
the same as that assumed for the linear measure- A third very useful program is ORDPACK
ment error model. Adjusting the estimates to the [29,30]. Although this program is somewhat limited
correct scale does not correct for the difference in in the types of linear measurement error models
models. Consequently, the typical use of factor that it can handle, it has the advantage of also
analysis in the chemical literature for the first being able to fit nonlinear measurement error
mass balance model discussed in Section 2 does models of the functional type. It also incorporates
not necessarily find the mass contributions of the up-to-date numerical analytical optimization
sources as specified in the original model, methods.

Although the errors-in-variables regression Mention should also be made of robust fitting
model (3) in the structural case can be fitted using methods for functional and structural measure-
LISREL or ISU FACTOR, alternative computer ment error models. These methods, which use
software exists to fit this model directly. First, either Huber's approach [311 to robust estimation
there exists a substantial numerical analysis litera- or Hampel's outlier-resistant theory [321 based on
lure on total least squares [27,28] dealing with measures of influence of extreme observations, are
fitting functional and structural errors-in-variables still under development, but offer the promise of
regression models under various assumptions on less sensitivity to outhers and other deviant mea-
the error covariance matrices E2, = Cov(e,). These surements. Some recent references which discuss
approaches make use of generalized singular value robust approaches are refs. 33-36. In the chemical
decompositions of the data matrices Y - mass balance literature, a pioneering effort in this
(Y...., Y, ) in place of the principal-component direction is presented in ref. 37.
type analyses of the sample covariance matrix of My own recent research on estimation methods
the Ys used by LISREL VI and other covariance for fitting errors-in-variables regression models has
structure model software. This yields greater concentrated on a type of 'correction-for-attenua-
numerical stability and reduced computational tion' approach long used by psychometricians
complexity (and time). However, the range of [14,15,38]. ro discuss this approach it is convent-
models that can be treated by the new total least ent to switch to a less subscripted notation for
squares methods is somewhat limited. Such pro- model (3). Let Y be the measurements on the
grams also do not provide large-sample measures latent dependent variables y, and let X, be the
of accuracy for the estimators, or tests of good- measurements on the latent predictor variables x,.
ness-of-fit. Thus

Alternatively, the computer program SUPER
CARP (14) can handle a wide variety of linear yvliBx + a, Y-.y +e,, X,-xx,+f, (12)
errors.in-variables regression models of both func-
tional and structural type, including models in
which the error covariance matrices are heteroge- where x , e,, fj are independent of each other,
neous (Cov(e) m Z, with the Z, possibly unequal). E(e,) - 0, E(ft) - 0. (Note that the structural

This program also has the advantages of produe- form of the model is being assumed, however,
ing estimated large sample variances for the esti- recall that good estimators for the structural model
mators, providing sonic diagnostics for goodiness. are also good estimators for the corresponding
of-fit of the models, and also tests of fI. The functional model.)
estimators produced by SUPER CARP incorpo- Assume that
rate methods suggested in Ref. 14 that produce
solutions that have better performanc in samples E(x,) -s, Cov(x,) - Z,, Cov( f,) - ,
of moderate size than the maximum likelihood
algorithms (which tend to occasionally produce i- 1, 2-....,n
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and let (and confidence region procedures) for classical
regression to estimate the parameters. However,

+ (13) there is a price to pay - one must know or
estimate E. As noted by Gleser 115,381, this re-

Then if the X are normally distributed, quires either replications on the X, for each dis-
tinct x, or the use of independent calibration data

E[xX,]-EX,+(I,-' )I , i -.... , n for the X-measurements. The latter approach is
(14) familiar to chemists - for example, one can ob-

serve the Xs obtained for known values of the x,
Even if the X are not normally distributed, the in laboratory experiments Just how one estimates
right-hand side of (14) is the best linear predictor - depends upon the context - what one is willing
of x, given X, in the sense of minimizing the to assume about the relationship of the calibration
expected squared-error loss of prediction. The ma- experiments to the experimental context in which
trix - in (13) is called the reliability matnx of the the measurements Y, X, are obtained Although
measurements X, of the latent predictor variables extra information is required for this approach,
x,. If i_ is known (or can be consistently esti- there is a welcome bonus, in that from E one can
mated), substituting ZXV + (,- )X for x, in determine the accuracy of estimation that can be
(12) yields a classical regression model expected in estimating B and a (and can also spot

such potential problems as multicollinearity in the
Y- B-(,YX ) + (a + BX) + (15) latent variables x,). Constraints of space do not

allow further detail, so individuals interested in
where this approach should consult Gleser 115,38).

e,* - B(x, - -X,- (I, - -=)N) +e,

is uncorrelated with X, - X. This model can now
be fit by classical least squares or robust regres- 4 LINEAR MASS BALANCE IODELS
sion methods 1311 toyield estimates t, & of r - BE
and t-a+ BX. Since E is known (or we have a
consistent estimator 2 of E), the equations As in most other real applications, mass bal-

ance models present the statistician with a choice
" B J, - a + BX between the desire to reflect all sources of varia-

tion and the need for parametric simplicity. For
can be solved for B and 4. The resulting estima- example, both of the mass balance models dis-
tos h, 4 are then consistent estimators of B and cussed in Section 2 assumed that the mass frac-
a. In the normal.X, normal. Y case, B and a are tions (source compositions) a, do not vary over
best asymptotically normal estimators when t and time. As Cheng and lopke [37, p.4 91 note, this is
4 are fit by least squares (or maximum likelihood) not realistic for all sources j. Consequently, any
from (15), and 2 is either known or the maximum measurements A,, of the mass fractions a,, taken
likelihood estimator E of E based on the data at a particular time to may not be valid for other
Xi,..., X. is substituted for E 115). Standard con. times 1 s' to.
fidenee regions for the elements of r and t can Cheng and Hopke [37, p.491 also point out that
easily be converted to confidence regions (and mass balance models are probably never exactly
intervals) for the elements of B and a. The method correct, since some mass may be lost due to chem-

also can be extended to nonlinear errors-in-vari- ical reaction along the path taken by particles to
ables regression models 1381. the receptor, while on the other hand there may be

The main advantage of this approach is ap- contributions of mass from sources not accounted
parent. One can use existing statistical software for in the model.
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A model which reflects the abovementioned sequently, the u(t), O t T are i.id random
sources of variation is the following: matrices with Eju(t)] - 0.

C' ,=c,,+oa We assume that the u(t). O <sT, the s(t),
1 _ 5 < 7', and the measurement errors w() and

c, " a,(t)s, +(,(1) (16) eo,) l <z m, 1 sj:5 r, are mutually statistically
independent. This assumption is reasonable since
the variations of the mass fractions and mass

o~a,,(0) +eCq. 1 i< m. 1 j~r. contributions are likely to be unrelated to each

I t - T other, or to errors made in measurement.
Substitution of (17) into (16) yields the follow-

Here, C,, is the measurement at the receptor of the lug model for the observed quantities C, Aj1 :
mass of property i at time t, c,, is the true mass of
property i at time I. w,, reflects errors of measure. c,, , 4' + ," +
ment in C, and (,() is the error in the mass C' I EI ,

balance equations due to unidentified sources and
mass lost to chemical reactions in transit. Also, w xos,, +g,,
a,,() is the mass fraction of property i from J-,

source j at time t. This mass fraction is measured Ad = X, + u 1 (O) + e,1 m X +fj, 1 ftm
by A,, at time t = 0, with error e,,.

In this model, all quantities are assumed to be I <] < r, T1 .... T (18)
random. (If a(t). I < i ; m, stays constant over
times i for any source j, we will simply assume If we let

that the variances of a,,(t). 1 i 0 c, 0 t.5T, C(t) - (C ...... C,). g() = (g, ..... S,
are zero) Realistically, those quantities indexed
by the time index t should have a time series A = ((a,,)), 1= ((U,))
correlation structure. However, as a strong sim. we can write (18) in vector-matrix form as
plifying assumption, we may assume that the times
t at which observations are taken are sufficiently C(I) -As(t) +g(t), I 1-...T (19)
spread out that such correlations are negligible, A - A +f
yet that the underlying process is also sufficiently The model (19) has the form of a factor analy-
stable that we can assume that the joint distribu- sis model, but with the important addttion of an
tions of time-indexed quantities are identical at unbiased and independent estimator A of the fac-
each time point I. Consequently, we assume that tor loading matrix A. Such a model has not previ-
the random matrices ((ao,(t)) are independently ously been considered in the literature. However,
and identically distributed (i.i.d.) with unknown it should be noted that the error term g(t) in (19)
mean matrix A - ((X,)). Similarity, we assume does not meet the requirements for classical factor
that the vectors a(t) - (s, ...... s,,)', 5 - 1..... T, analysis, To see this, note from (18) that g(t) is a
of mass contributions from souTces I. r are function of the vector a(t) of mass contributions
iid., that the vectors i()-(e(t)... t,(t))', from the sources, and also of the equation error

T ,..... are i.i.d. with mean vector 0, and that vector c(t) - (c ..... ,,). Since c(t) reflects both
the vectors s(s) - o,,.... to,,)', s - T,..., T, of loss of mass due to chemical reaction (which may
measurement errors in the C, are i.i.d. with mean be related to the total mass released into the
vector 0. environment) and also other unidentified sources

Let of mass (which may be correlated with mass pro-
u(t) - ((a,(t) -x),,)) (17) duced by identified sources), any assumption that

c(t) and s(t) are independent could be erroneous.
The u,,(t) are the values of the random mass For this reason, and the previously mentioned fact
fractions a,,(t) centered at their means X,, . Con- that g(s) is a function of s(t). the usual assump-
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tion made in classical factor analysis that s(t) and mean vector and covariance matrix of the s(t), the
g(t) are independent seems to be excessively common covanance matrix of the g(t)). Using the
strong. Fortunately, the large-sample properties of prior for A, and the data A = (A,,), one can
classical factor analysis estimates continue to hold update the prior to form a posterior for A given
under weaker assumptions concerning the joint A. This posterior distribution can then play the
distribution of sit) and g(t)-sec ref. 39. Never- role of the prior distribution of A in Press and
theless, if we obtain estimates of A and the s(t) Shigemasu's Bayesian analysis. Note that this is an
using classical assumptions, it will be necessary to appropriate way to use the information conveyed
check that these (or similar) assumptions hold. by the measurements A,,, since these are often not
Such verification will have to be reserved for later really measurements but instead may be partly
research obtained from subjective judgments of the experi-

In the light of model (19), both of the models menters. Press and Slugemasu's analysis [40) yields
for linear mass balance mentioned in Section 2 posterior modal estimators of A and posterior
have serious deficiencies. The first (factor analy- mode 'predictors' for the source contribution vec-
sis) model discussed lacks the identifiability prop- toes s(it), as well as posterior credible regions
erties of model (19), treats mass fractions a,,(t) as (Bayesian confidence regions) for these quantities
constant over time, and ignores the prior knowl- and tests of fit for the model (particularly for the
edge of estimates A of the factor loading (mass number of sources r). As already noted, it will be
fraction) matrix A for known sources. However. necessary to check whether the large-T properties
this model does share with model (19) the flexibil- claimed for these procedures continue to hold
ity of allowing an unknown number of sources under the violations of classical factor analysis
additional to those explicitly modeled, and in assumptions which we have noted in the model
modeling the variation of the source mass contri- (19).
bution vector s(i) over time.

The second linear mass balance model dis-
cussed in Section 2 has identifiable parameters $ CONCLUDING REMARKS
and incorporates estimates of A. Unfortunately,
this model is static (ignores variation in the a,1(t) A subject as vast and varied as that of linear
and s, over time), and requires prior knowledge measurement error models cannot possibly be
of the number r of sources. It also makes the very covered in a single survey paper. For this reason,
strong extra distributional assumption that (C,,, the comprehensive surveys in the books of Fuller
Al., A,)' are independent, - . t t. [14) and Kendall and Stuart [41) are highly recom-

Neither of the two models discussed allows for mended. The present paper has highlighted coin-
random errors c,, in the mass balance equation mon models, themes and problems in the inca-
due to loss of mass in transit by chemical reaction. surement error literature in the hope that this brief

Due to lack of space, it is only possible to introduction will help chenists gain access to that
sketch an approach to estimation of the parame- literature for use in their own research. The mod-
ters in model (19). Any such approach will require cling and treatment of measurement (and equa.
us to model ohe common distributions of the error tion) errors is a fundamental problem in the statis-
vectors g(t) and error matrix f, particularly the tical analysis of physical data which must be prop.
covariance matrices of their elements. erly addressed if conclusions reached by scientists

My own favored mode of approach would be are to be valid. Although the problems that arise
Bayesian (or empirical Bayesian) based on recent are analytical difficult, they are unavoidable. For-
work of Press and Shigemasu 140). These authors tunately, some of the best minds in science have
provide an approximate (in large samples - here, addressed these problems over the last fifty years,
large T) Bayesian approach to factor analysis and there are many useful methods available to
using normality assumptions for the g(t) and con- practitioners. In the context of linear mass balance
jugate priors for the parameters (A, the common models, the strengths and weaknesses of two of



56Chemometnes ad Intelligent Lboratory Systems x

these approaches have been mentioned and a new 13 R.C. G3eary, Determinations of tusear relations between
model incorporating their strengths (in a modeling systematic parts of vaiables wisth errors of observaton the

sense) has been proposed, It is hoped that further variances of stuch are unknowns. Ecomosreca. 17 (1949)
30.-as

research on this and similar medels will yield 1 A ulr er~~etErrMdl.Wly e ok

improvements on methods currently used to 19s7.
analyze data based on linear mass balance models. iS Ui. Glesor. The omporiance of assessing mseasuremsent reli-
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Metrological measurement accuracy:
Discussion of "Measurement error models"

by Leon Jay Gleser
L A. Currie

National Institute of Standards and Technology, Gaithersburg. MD 20899 (U SA.)

INTRODUCTION ourmeasurement systems are producing high di-
mensional data. Except for defined standards, the

Professor Gleser has provided an exquisite 'error-free' independent variables of classical uni-
overview and integration of the error structure variate chemistry are, in fact, simply unattainable
and statistical modeling that may be employed to asymptotes covered by the more general linear
characterize the results of modern, multivariable measurement error models. Furthermore, the divi-
chemical metrology. His demonstration of the sion into dependent and independent classes be-
equivalence of three representations of the linear, comes increasingly problematic as the number of
multivanate statistical relationship - as factor variables increases.
analysis (Gleser's eq. (2)), errors-in-variables re- In Gleser's paper we have been given a funda.
gression (eq. (3)), and implicit functional (eq. (4)) mental overview of statistical issues and statistical
models - is especially satisfying, in that it makes references. In keeping with the spirit of chem-
plain the fact that we may approach linear models ometrics, I shall attempt to complement that with
in chemistry from apparently different, yet intrin- some chemical approaches, assumptions, and ref.
sically equivalent perspectives. His 'new model erences.
(eq. (19)) for treating the inevitable nonlinearities
or unsatisfied assumptions in real chemical experi.
ments should prove particularly interesting to
those involved in difficult environmental and field
studies, Finally, the essential difference between
structural and functional models reveals a basic
dichotomy: that in the physical sciences we gener. As noted above, effectively all of our metro-
ally find causal (functional) relationships, often logical parameters must be viewed as estimates,
involving fixedlatent variables, yet the statistical complete with error (generally random and sys-
estimation procedures that we must use are 'satis. tematic). Certain characteristics of metrology in
factory' (in terms of existence and consistency) for the physical science, however, have importaie:
the multivariate structural models. Resolution is implications for the measurement error models
promised, however, through the asymptotic behav- discussed by Gleser. The most important of these
ior of the estimators, are: (1) theoretical and/or controlled, laboratory.

The relevance of Professor Gleser's essay to based estimates for the error-covariance matrix;
chemical metrology follows from the facts that all and (2) multiple levels of measurement, where
of the chemical variables that we measure are estimated quantities (latent variables) maybe more
subject to error, and at a rapidly increasing pace and more remote from the directly observed sig.
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nals of chemical sensors. Point-], already alluded with cluster analysis, it can serve as a very useful
to by Gleser, means that in many cases the van- exploratory tool, particularly in its graphical mode,
ances and correlations may be precisely estimated to make inferences (or conjectures) concerning
from physical theory or presumed distribution concealed relattonships in multivariable chemical
functions (e.g, Poisson), or they may be derived systems [11] Using principal components projec-
from extensive, controlled laboratory evaluations. tions, one can obtain rather efficient vizualization
That is, we may often supply the covanance ma- of high dimensional space, and draw inferences
trix at the outset, rather than estimating it with concerning clusters and/or classes of objects,
the linear model that we are fitting. The second lower dimensional (lines, planes) mixture relations
point is illustrated by the following metrological among end member classes, important non-linear-
level-diagram: ities, and possible outliers and/or 'unusual' sam-

ples. Beyond pure visualization, one may seek to
Level Variable Realization simplify the representation by removing factors
I y: instrumental direct observation (cohponents) that appear to derive largely from

signal (sensor response) noise, or perform some simple rotations to inspire
2 x: species-x con- calibration, decon- chemical insight. These applications of FA can be

centration volution of y extremely powerful when linked with the well-
3 0:source strength/ calibration, decon- trained eye or the inspired scientific mind. They

system property volution of x are replete with pitfalls, if employed as automatic
routines.

The essential point is that the 'measured quanti- A second application of factor analysis is to
ties' appearing as parameters in the linear mea- provide an empirical, linear approximation of the
surement error models may themselves be the multivariate structure of a chemical class. Such
product of modeling. As we move from level-I 'class modeling', based on the first few principal
toward level-3, the measurements become more components of a class of'similar' chemical mem-
and more indirect. For example, we can never hers, commonly known as 'soft modeling', has
directly observe the concentration (x) of a chem- become one of the major descriptive and dis-
ical substance; we must compute it front a calibra- criminating tools for chemical classification and
tlion model and the response of a chemical sensor, pattern recognition studies [2,3].
Similarly, we cannot directly observe the strength The third role for factor analysis is for linear
of a pollutant source (0) at a receptor site; we functional modeling. Casual use is ruled out in
must compute it from the computed chemsical this case. Assumptions and parameterizatton must
concentration vector or matrix (x) obtained at be recognized - viz., we are explicitly treating the
that site, model

The importance of the multiple levels of
metrology to the application of measurement error y - xA + e (1)
models is that the associated deconvolution mod- where y is the matrix (t × ) of responses for a
cling of signals and concentrations can lead to given set of variables; x is the matrix (t Xj) of
model error. (missing components, systematic pure component concentrations; A is a design or
model/parameter error, ... ) as well as correlated chemical profile matrix (j × i), reflecting normal-
estimates. Further comment on this matter will be ized responses or ,pectra of pure components; and
given under the subheadings of factor analysis and e is the measurement error matrix (t x i). (Eq. (1)
measurement refinement, is the transpose of Gleser's FA equation; it fol-

lows the convention of putting 'objects' or sam-
FACTOR ANALYSIS pIes by the rows of y (41.) The fundamental chen-

ical factor analytic issue is that eq. (1) represents a
Factor analysis (FA) is employed in the physi- linear functional relationship, it is not an eigen-

cal sciences in at least three different ways. As vector equation. In other words, the factor score
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matrix x has meaning in terms of chemical com- tors for use with eq. (1). It speaks to the second
ponents, having chemically characteristic spectra issue, namely model uniqueness, using Gleser's
(or fingerprints or profiles) represented by the terminology. Among other recommended ap-
loading matrix A. Thus, although FA should lead proaches, perhaps the most famous is that of 'Self
to the proper estimate for the number of linearly modeling curve resolution', invented by Lawton
independent (estimable) chemical components, ad and Sylvestre [7] This technique was developed
hoc manipulations such as VARIMAX cannot in for two-component systems, and it works well if
general be expected to produce chemically correct the samples reasonably span the factor space The
loadings. (For one thing, chemical profiles are extreme samples set inner limits for the unknown
rarely orthogonal.) spectra or profiles, and non-negativity constraints

It should be noted that eq. (1) is employed set outer limits. If unique variables exist for each
broadly, not only in the area of environmental of the chemical components, then spectra rather
source apportionment ('mass balance' as used by than spectral bands may be estimated. Other
Gleser), but also in the chemical laboratory, where workers later extended the Lawton and Syivestre
the xs represent concentrations of chemical corn- approach to three [81 or more components [91.
ponents of the system being analyzed. These two Uncertainties for estimated end member (isolated)
types of application reflect levels-3 and -2 respec- spectra have been derived by the error propa-
tively of the chemical metrology level structure gation technique of Roscoe and Hopke [10,111.
presented earlier. In both cases, residual variance Other means for deriving chemical factors take
may be employed to estimate measurement error, into account clustering of loadings using the van-
or to test presumed measurement error. ance diagram technique [121, incorporate physi-

Several issues related to the validity and appli- cochemical modeling [13], and compare derived
cation of eq (1) deserve exposure. First, is the FA spectral windows with spectrochemical data
number of linearly independent components, r. bases [14]. For an excellent review of the several
Unfortunately, r is rarely known, except in the approaches to 'mixture (factor) analysis' see Gem-
case of single components or fully isolated compo- perline (15,16).
nents (as in high resolution spectrometry or chro- The question of finding mutually exclusive, fac-
matography). Ose of the most important fune- toe-specific (unique) variables is closely related to
tions of FA, therefore, is to make possible an the 'MLR(T)' technique. Here, one designs the
estimate of r, given an appropriate data matrix. A measurement process to contain as many unique
number of magic rules exist to produce such tracers as possible. Multiple Linear Regression on
estimates. One of the more reliable approaches the Tiacer species then produces spectral or pro-
appears to be an F-test, as outlined by Malinow- file estimates for the corresponding sources. Tis
ski [5], subject to the constraints that the errors be has been especially useful in sorting out the infor-
homogeneous (constant variance over all factors) mation contained in environmental (mass balance)
and uncorrelated, Starting with the least signifi. data matrices (17-19).
cant principal component, error eigenvalues are The third issue. Almost without exception, ex-
tested sequentially for statistical significance. A perts with chemical factor analysis (as embodied
second issue, also treated in ref. 5, relates to the in eq. (1)) recommend avoiding standardization of
testing of possible target vectors (columns of A the data matrix prior to factor analysis. This is in
matrix) for significance, given the 'abstract factor keeping with the assumption of error homogene-
space' deriving from principal component analysis ity, and Gleser's comment (Section 3) regarding
(PCA). Malinowski observes that this procedure misuse of the sample correlation matrix. On the
"brings target factor analysis from the quagmire other hand, if variables are measured on quite
of heuristic reasoning to the realm of statistical different scales, or exhibit quite different measure-
inference." ment errors, then initial 'scaling' (standardization)

Target factor analysis (61 is one of the ap. is recommended [20]. That means use of a correla.
proaches for deriving chemically meaningful fac- tion matrix. Quoting Mellinger (21], "the covari-
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ance-variance matrix may be used.., only when Sixth, and last, is the matter of random sam-
the variables have essentially equal variances." An pling. In Section 4 of his paper, Gleser observes
interesting discussion of the four alternatives - that all of the quantities in the linear mass balance
centering or not, scaling or not - is given by models, though contaimng a time index, are as-
Malinowski and Howery [6) A device to use sumed to be random, that time series correlation
standard FA software (which centers data) for FA should be made negligible by the sampling
about the origin, for environmental source appor- strategy. This may be possible in a number of
tionment, was developed by Thurston and Spen- instances, but in many chemical expenments time
gler using a fictional null vector [221 (and space) variations of chemical component in-

Not unrelated to the question of scaling is the tensities are turned into an advantage. One illus-
fourth issue, data matrix weighting. As noted by tration is found in chromatography, and the rela-
Gleser in his discussion of identifiability, classical tively new technique of evolutionary factor analy-
FA models treat the error-covariance matrices as sis [24). Here, cyche appearances and disap.
though they were equal to the same diagonal ma- pearances of components in time-partitioned data
trix, independent of sample. This assumption gen- matrices are detected as periodically changing
erally does not hold in chemical applications, for numbers (r) of chemically significant principal
several reasons. The primary reason is that chem- components. The time sequence of changes in the
ical measurement error usually increases with in- number of significant components serves as the
creasing concentration; and the concentration of a first step in identification of species that have
given element (chemical variable) may vary widely different- chromatograpluc elution times. Clearly,
depending on both the relative and absolute analogous temporal phenomena are associated
amounts of the predominant components in a with the transport of atmospheric species; so
given sample. A log transform might help, when evolutionary factor analysis could become a very
the relative standard deviation is fixed. A weighted important part of linear mass balance modeling.
FA solution to the problem has been offered by
Cochran and Home [23), where the variance for
data matrix element y, is treated as a product ERRORS-IN.VARIABLES REGRESSION
function characteristic of row-t and column-i.
These authors demonstrated that classical PCA, Gleser's 'new' model (his eq. (19)) serves as an
which ignores this row-column dependence of the excellent conjunction linking the discussion of FA
variance, leads to incorrect results, and errors-in-variables regression (EVAR), for it

The fifth issue relates more specifically to promises incorporation of the best features of
identifiability - i.e., the confounding of covari- each, while compensating for some common de-
ance among chemical components, with that asso- ficiencies. Of special interest is the utilization of
eiated with their measurement errors. The prob. both the full sample data matrix and prior esti-
lem derives from the fact that chemical concentra- mates of the factor loading matrix (chemical spec-
tions (level-2 in the metrological level diagram) tra or profiles). Classical FA ignores this prior
are often estimated from a least squares fit to information, while classical EVAR treats data from
overlapping signals from level-1. This happens for only one sample at a time. At the Quail Roost-lI
example in the deconvolution of a gamma ray Workshop on Receptor Modeling via Chemical
multi..-t, and in corrections for mutual inter- Mass Balance and Factor Analysis Models, some
ference in optical or X-ray spectrometry, Thus the creative attempts were made to incorporate these
error-covariance matrix for the response data ma- two types of information, but no generally satis-
trix used in FA is not necessarily diagonal. Per- factory solution was put forth [25]. Later analyses,
haps methods exist for treating known off-diago- based on the same data sets, showed further crea-
nal elements in FA, but untreated, they will con- live appioaches, such as linear programming (LP)
found the component estimates. Further coin- and partial least squares (PLS) (26-281. The PLS
ments on this issue will be given in the section on solution, in fact was a two-block factor analytic
measurement refinement, technique that related the principal cigenvectors
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of the source profile matrix to those of the sample (below eq. (15)) hold the key. This very facile
data matrix - i.e., as with Gleser's new model, it solution to an important class of chemical prob-
utilized all of the samples together with prior lems is all the more practicable, because it can be
estimates of the source profiles Comments on applied using standard linear regression software.
other advantages of Gleser's new model will ap- The 'price we must pay, estimation of the reliabil-
pear in the next section. ity matrix, is not unreasonable. As Gleser shows

Returning to 'single sample' EVAR, it is in ref. 36, the covariances comprising the reliabil-
noteworthy that the maximum likelihood estima- ity matrix come directly from: (a) the set of ob-
tion (MLE) for two-variable chemical problems served variable values (2,), and (b) the difference
has long been recognized as important. MLE has (2 - If) where 2, represents the covanane ma-
been employed especially in intercalibrations in- trix of measurement errors These latter are the
volving two measured variables and in intercom- same errors (variances) we now employ in EVWLS
parisons involving two laboratories. Both biased and IWLS; they may be estimated through reph-
and unbiased methods for incorporating the con- cation or 'theory'.
comitant 'errors-in-x' are found in the chemical
literature [29,30]. Multivariate manifestations are
found in the areas of multicomponent gamma ray MEASUREMENT REFINEMENT
spectrometry and multicomponent source appor-
tionment (chemical mass balance modeling) In the last parts of this discussion I should like
[31,32], to comment on aspects on the problem where the

Because of the importance of this topic in mod- chemist can make his most important contribu-
em environmental and analytical chemistry, Beebe tions, given the insights concerning measurement
and Currie undertook an empirical evaluation of error models provided by the mathematician-
popular algorithms/software for treating the statistician This represents the synergism which is
problem [33]. Specifically, the methods mentioned the true benefit of cross-disciplinary research. By
in Gleser's paper, effective variance weighted least refining the measurement process, the chemist can
squares (EVWLS), orthogonal distance regression reduce or eliminate errors associated with multi-
(ODR) [34) and the MLE (structural model) collnearity, identifiability, and certainly model
method of Fuller [351, were tested with bi- and uniqueness. By model refinement, using known
trivariate data sets having known structure. De. physicochemical relationships, otherwise erro-
tails will be found in ref. 33, but two of the neous, linear model assumptions may be averted.
essential conclusions were that ODR was rela- Perhaps the most obvious measurement refine-
tively less precise, but unbiased, while EVWLS ment relates to the relative magnitudes of the
gave accurate precision estimates, and was as pre- measurement errors across species and/or sam-
cise as MLE, but biased. This was surprising, pies. (Reducing the absolute magnitudes of the
because the formulation of EVWLS in ref. 32 measurement errors, of course, always helps; this
seemed equivalent to MILE On further reading, should be done to the extent feasible.) Planning
however, one finds an approximation thatmakes measurements to control the relative magnitudes
its implementation equivalent to iteratively of measurement errors is interesting because it can
weighted least squares (IWLS) which is known to influence multicollinearity. For example, the ma-
produce biased estimates [29. This is a rather trix to be inverted in weighted regression analysis
serious discovery, for EVWLS is the currently is A'WA, where A is the design matrix and W is
accepted method for chemical mass balance (re. the diagonal matrix of weights (inverse variances).
gression) calculations. Altering the relative weights thus alters the 'condi-

Gleser's proposals for Lorrecting for attenua- tion' of this critical matrix of linear regression. In
tion (bias) are especially welcome, given the fore- fact, an optimum may be achieved by maxinuzing
going observation. The reliability matrix (his eq. the determinant of this matrix, the Fisher mfor-
(13)) and the expanded regression model error mation 118). Chemical insight is related to this

!
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issue in two ways: deciding which variables are this sort that is both unique and absolute, one can
most important for increased weight (depends on accomplish other ends. Namely, inexpensive
the nux of likely source components), and decid- (XRF) unique tracers (mineral-corrected potas-
ing how to accomplish the measurement task. slum, lead) that are not absolute can be calibrated,
When weights depend on signal magnitude, as thus achieving reliability for a given airshed, but
they often do in chenucal measurements, then at reduced cost [18,38). Reliable (orthogonal)
iteration is necessary to take into account the y tracers can also be added to the design of the
dependence. The basic question is one of iterative, overall experiment. An example is a recent EPA
intelligent design of the chemical measurement sponsored study of carbonaceous aerosol sources
process, in Roanoke, VA, U.S.A. Here, 

14
C was employed

Closely related is the issue of chemical inter- in the validation/calibration mode discussed
ference ani the corresponding off-diagonal ele- above; this step resolved wood-burning carbon
ments of the sample covariance matrix. This is a from fossil carbon in the atmosphere. As a second
very real i~sae for o.%rlapping spectra or chro- step, stable rare earth isotopes were purposely
matograslac peaks in laboratory analysis, and it added to label fuel oil in the area. Their signatures
has important consequences for environmental provided added 'orthogonal' resolution of this
mass baiance studies where level-2 metrological component of the atmospheric soot from the fossil
data (estimated cnemical coicentrations) are em. component from motor vehicles [391. A statement
ployed in level-3 models. Covariance among con- by Rao marvelously supports the philosophy of
centration estimates must be avoided for classical such approaches to measurement refinement in
FA; quoting Anderson: "an essential assumption quite another field: "Possibly what is wrong with
is that the lerrorl covarians,. matrix is diagonal" the economists is that they are not trying to refine
[371. To achieve utw, kotts money. To illustrate the their measurements or trying to measure new vari-
point, in air particulate receptor modeling it is ables which cause economic change. That is far
common to measure a host of element concentra- more important that dabbling with whatever data
tions using X-ray fluorescence analysis (XRF). are available and trying to make predictions based
The method is inexpensive (ca. $40/sample) but on them" (40).
insensitive for certain elemei:s (e.g., those with
low atomic number, such as carbon, boron), and
exhibits interferences for others (e.g., lead L-X MODEL REFINEMEttNT
rays interfere with arsenic K-X rays). Correction
for interference, often done by regression tech- Not far removed is the subject of model refine-
niques, necessarily induces covanance between the ment. Gleser's proposed model (eq. (19)) speaks to
estimated (corrected) concentrations. A more ex- this. As recognized also by Cheng and Hopke [26),
pensive technique (by a factor of three to five), real receptor models are not linear. There are
neutron activation analysis (NAA), will often selective changes in particle composition during
overcome both limitations, though special inter- transport, including physical effects (agglomera-
ferences (dependent on nuclear properties) may tion, settling) and chemical effects (reaction). I
occur here. Unique tracer techniques generally believe that the most effective way to account for
cost even more, but they may elminate collinear- such nonlinearitis is to employ carefully con
ity among certain sources; and often the special- structed physicochemical models of the respective
ized, single species measurement process has iso processes. The alternative, which will not be fu,'-
interspecies interference. The price is higher. A thcr discussed here, is to use chemical knowledge
ease in point is WC, which we measure to unam- and data to select those species that are 'chem.
biguously resolve fossil from biospheric carbon ically robust' - i.e., conservative (linear) tracers
sources (cost: ca. two to five times that of NAA). that resist change, isotopes and nonreactive gases

Use of tC illustrates measurement refinement being classic examples. Physicochemial modeling
by paying attention to the chemical question con- for source apportionment has been dubbed 'hy.
cerning what to measure. By employing a tracer of brid modeling'. Examples are seen in the use of
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reaction rate constants to help model the gas-to- tion of oceanographic models Like atmospheric
particle conversion of sulfur dioxide to sulfate [41] models, they have been designed to describe the
and the selective oxidation of polycyclic aromatic state of the fluid vstem, including concentrations
hydrocarbons during atmospheric transport [42]. and transport of.:hensical constituents. In both
An interesting statistical challenge, for better rep- areas of environmental science, the simplest mod-
resenting 'real' behavior, would be to describe els frequently serve quite well for estimation and
;ndividual source profiles (columns of the A ma- prediction of a limited set of parameters. In oc-
trix, eq (1)) as empirical principal component canography, one of the driving forces has been the
class models [2] to serve as prior information for need to understand the effect of anthropogenic
source apportionment by FA and EVAR. carbon dioxide perturbations on the atmosphere-

Model refinement can be considered in a larger, ocean system - a central problem for forecasts of
moie generic sense. Realizing that our models are global warming. The earliest models simply treated
imperfect 'cartoons' or caricatures of reality gen- the spatially averaged atmosphere and world oc-
erally emphasizing (distorting?) particular per- eans as two or three reservoirs (45,46]. Far more
spectives or parameters, it is meaningful to con- realistic is the box-diffusion model for vertical
sider classes of models, iiving varying degrees of transport in the ocean, which treats the upper
refinement (and corresponding increases in cost). layer as well mxed and describes the ocean below
In atmospheric chemistry, for example, we may the thermocline as an infinite set of boxes - i.e.,
look beyond the relatively simple hybrid models as a diffusive medium [47]. This model, which still
mentioned above, to two and three dimensional describes a fictitious 'average' ocean, has been
(spatial) models of the temporal processes taking compared with more realistic representations of
place Such 'full dynamic modeling' relies heavily the ocean which take into account horizontal
on highest quality numerical methods, plus statis- transport as well as upwelling of deep ocean water
tics, but it must be fundamentally based on sound, in the equatorial zone and downwelling im the
detailed physical and chemical analysis of the temperate and polar zones. It was found that the
system. Pertinent illustrations of such model box-diffusion model "gives an excellent represen-
classes are given in Table 1, for atmospheric chem- tation of atmospheric CO2 and "4CO, interactions
istry together with two other fields of endeavor, on time scales up to several tens of years" and
This viewpoint was presented for atmospheric hence near-term effects of fossil fuel combustion
modeling in ref. 43, it was inspired b), ltofstadter on global climate [41. Expanding the temporal
144). scale (to glacial times) and the number of chem-

Considerable insight into the relation between ical variables observed required a considerably
model realism and viewpoint, and metrological more complex (realistic?) model. 'Pandora's Box'
accuracy, can be gained by examining the evolu- [49] .

TABLE I

Model refinement
*Another. cogent illustration of environmental model com.

Music 1441 Atmospheric science Oceanography plexity and relevance has just come to my attention, from the
Muzak Linear imodelIs 1191 2.bo 4S.46) field of ground water h),droloy. As with the several imperfect

(conseivative tracer) (aove/below vews of the ocean (and the classic multiple perspectives of the
thermocline) elephant), the particula perspective of realty embodied in the

hydrological model (or "catsoos') determined its predictive
Ja.z Ilybridl26) Box-diffusion (471 valdity. In is case. a constrct was created to descibie She

(SO (41L PAlII 1421) (surface. deep ocean) behavior of ground water in fractured zones. and it was para.

Classical 1.2.3D dynarr. 'Pandora' 1491 meiterized wth the most accessible observable. the fluctuating
music reacting system (multticompartment/ ground ar level. Once calibrated, the model did ,ell at

I flows) predicting ground ater levels: but-when a new need arose,
realty forecasting transport of pollutants, it fatted completely (E.A'

Ptych, personal comuanication. 1990),
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Abstract

Thompson. AMN and Ste-sart, R W. 1991. lloss chenical kinetics uncertainties affect concentrations wssrputed in an atinospheno
photochemical model. Chensrsiics and 1ntelhgencinZa!,aoly S)steoi. 19: 69-79.

Troposphenic photnchemnical models are used increasingly as predictive tools to assess the chemical response of the lower
atmosphere to changes in physical and chemical conditions swhich influense trace species distributions, Amiong the many uncertain-
ties in the nmodelig process are imprecisions in reaction rate data used in formulating model tontinaity equations. In this paper %c
evaluate the propagation of these kinetics uncertainties to compated species ditrnhations is a photochemical model.

A one-dimensinnal kinetics-diffasion moedel having 72 reauions among 24 species ts ased. Nan-chemiucal sources and initial
background concentrations ame chosen to he representative of clean continental tnud-latitude air. Chemical reaction rate data are
mostly those of the NASA Kinetics Evaluation Panel No. 8 (1987) and inclade imiprecisions in photolysis rates and binary and
ternaty reactions A \ionte Carlo technique As used to estimate uncertainties in computed concentrations doe to the given rate
uncertaiinties.

We compute uncertainties in odd hydrogen species (the radicals Oil and 11
0

1) and in hydrogen peroxide ranging from 22-41%.
Uncertainties for 0, and CO are. respectively. 17% and 30%. Odd nitrogen uncertainties range from 18% for NO to 725% for Na1s.
The smallest uncertainty is that for nitric acid at 6%. hat this is neglecting uncertainties in physical sources and sinks. such as
precipitation scavenging. The uncertainty in Ofl (31%) is important when using the model to predict troposphenc oxidant lesels
because Ott determines the lifetinme Of numerous naturally and anthropogenically emitted trace gases.

INTRODUMTON field experiments, calculating ozone production in
convective situations (4).

One-dimensional photochemical models are In both predictive and tnterpretive modes, the
used to simulate vertical profiles of trace gan din- photochcmical model gives results that are uncer-
tributions (0j, NO0 , CO, OH, H.0 2 ) in the atmo- tain at least to the degree that key photochemical
topred.ctechaneuse an amospo hetrompositonh wyerroe reacttonrnt s are nuncnownin deecai tail. ah
topre. We chave uie atmocsophe tomposphenewysfocsm reaction rts are nttanwnd mhntailth
primarily lcvels of the oxidants 0,, OH, and H202, We have evaluated some of these effects and re-
as emissions of NO, CO, and CH4 change over tlte port on an investgation of uncertainties tn ealcu-
next several decades [1-31. We also use the model latcd trace gas concentrattons due to the timprect-
to interpret trace gas measurements in selected sion of photochemical reaction rates.
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A Monte Carlo method is used to specify sets centration of the ith species, c,, as a function of
of photochemical reaction rates, with means and time, t:
uncertainties given from a standard tabulation of . ax, 1
kinetics and absorption spectra. The overall uncer- z K(z, t)N(z)-(z, t +P,(z, t)
tainty or likely range of concentrations for a given ac,
species is determined by hundreds of runs in which - L(z, t) = -- (z, t) (1)
each rate coefficient is selected randomly and a where z 7 altitude (cm, i our model); K(z) is an

steady-state solution is computed for all species. eddy diffusion coefficient (in cm2 
s

-1
, assumed to

The Monte Carlo rate kinetics study is carried out be time-independent); N(z) is molecular density
for one type of background chemistry, simulating (cm-3); Xj(z, t) is mixing ratio or mole fraction
a northern mid-latitude continental environment.

ndescribes a unique atmospheric of species i. P,(z, t) and L,(z, I) are photochem-
Each solution c ical production and loss terms, respectively, for
composition and when these are averaged to- species i. Photochemal reactons making up pro-
gether, the mean is taken as representative of this duction and loss include photodissociation or
type of chemical regime. In a related study [5) we thermal dissociation reactions, in which the species

report on how species uncertainties vary with mean thera dragmen re a nich pces

composition when other chemical environments i is a fragment formed by a unimolecular process;

are simulated. bimolecular reactions between two free radicals or
a free radical and a nonradieal species; and three-
body processes in which combination of two radi-

METHOD eals in concert with an energetically stabilizing
third body leads to formation of a nonradical

Photochemical model molecule.
A one-dimensional photochemical-kinetics Our photochemical model spans 0-15 km (the

model-solves the continuity equation for the con- latter taken as mean height of the tropopause)

TABLE I

Trace gases and boundary conditions is photochemical model

Species Upper boundary (15 kin)

0, influx. S X 10icm- 
$I

O( p) influx.4X I0 cm-
2 s- 1

C1l, Clso, CRIO. C11,0011, CalisO2,
IlO. C1110011. Cll'CO, It. 011. 110 photochemical equiibium

NO,(NO + NO, + NO, + IINO,+ IINO, + 2N20) influx. 2.5 X 10' cm-
2 s- 1

112CO. PAN. CIICICHO zero flux
CO troposphere.to-
C2l1 , stratosphere transfer

Lower boundary (0 km)

0 deposttion
O(P) de osltuon
C01, C1O, Ci5O2, C2llsO2. CiI)CO. 11, 011.1102 photochemical equlibrium
NO flux
NOi deposition
NO,. NaOs deposition
PAN * deposition
IInCO, CllOOll. CliCllIO, C2IOOiI deposaion
1lO,. IlINO, IINO, * depostn
C211, fixed. 1.5 ppbv
CO flx

These species also rained out with first.order removal below 6 kin.
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TABLE 2

Photolysis reactions 9

Model Photodissoeiation % Standard dcv.. % Standard dev
reaction NASA/JPL [8l Monte Carlo

J3 O +hr-O2+O 10 9.7

At 0+4- 2 + o(
t
D) 40 40

J) NO 2 + ,- NO + 0 30 30
J, HNO 3 + hr , O +.. N02  30 29
Jo H 20 + h- OH + OH 40 43
J6 N03 + hr- NO + 02  100 83
J7 NO, + hP'- NO,+ 0 100 81

J- H 2CO , hy , + HCO 40 38
J9 CH)001 + h,- Oil + CH)O 40 37
J10 HNO 4 

+ 
hP - HO2+ NO2  100 89

J11 CH)CHO + hy - C11) + HCO 40* 37
J1 N30+hr-NO2 +NO 100 82
335 ItrCO + h,- H 2 + CO 40 35
J1. C2HOOH + h- C2H,O+OH 40*** 37
Jo PAN+hrC-CHCO)+NO, 308 27

• From 800 model eons.
Spectfied unotainty assumed in analogy sith H2CO.

*** Speied uncertainty assumed in analogy soth CHItOOH.

Spetafied uncertainty assumed in analogy ith HNO3.

with 24 grid points 11,61. Spacing is at 1-km inter- where Xj -ith species mixing ratio at altitude grid
vals between 1 and 15 km and on a refined grid point j; f- forcing function which is a sum of
below 1 km to give better simulations of gradients flux divergence, and rates of chemical reaction;
in the boundary layer. Several types of boundary ns - total number of chemical species; np - total
conditons are specified, depending on the species; number of spatial grid points. The mixing ratios
photochemical equilibrium, flux, fixed mixing are obtained from integration of (2).
ratio, or removal at surface or tropopause with a In performing sensitivity calculations, as for
specified transfer velocity. We calculate vertical example in simulating perturbed emissions or
profiles of 24 trace species, a standard comple- varying reaction rate coefficients, a steady-state
ment of odd oxygen (03, O(

3
P)); odd hydrogen version of the model is used. This means simulta-

(H, OH, H02), odd nitrogen (NO, NO2, NO3, neous solution of eqs. (2) where dR/dt - 0 and
N20, HNO 3, ttNO 4 - HO 2NO 2), hydrocarbons diurnally averaged reaction rates and species con-
derived from oxidation of CH 4 (CH 3, CH 3O2, centrations are computed according to the method
H 2CO, CH00H, CO) and C2H 6 and its oxida- of Turco and Whitten [71. Diurnally averaged rate
tion products, including pcroxy acetyl nitrate coefficients and photolysis rates are used in the
(C2HO 2, C21-100H, CHCHO, CH3CO,, PAN). steady-state version and the desired means are
A list of species and boundary conditions is given approximated:
in Table 1. The set of chemical reactions used in
the model appears in Tables 2 and 3. k1 X1Xj.. (DF)ik 1,,R (3)

Eq. (1) is solved by finite differencing after
converting to a set of nonlinear algebraic expres- The reaction or loss term in eq. 3 is the product of
sions of form: diurnally averaged species mixing ratios 9, and R,
d - and the diurnally averaged rate coefficient is"T "!(R, ')

" xl, x1,j -(DF d),k,/ (4)
xf.l XA.. (2) where (,I is a diX2u'r Xavr.igf Xr ,
X '2"

,
X 3 ..... X 1". (2) where (D F) ,, is a diurn al averaging factor and k ,,
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TABLE3

Photochemical reactions, rates, and uncertainties

Model Bimolecular Rate and uncertainty factors
reaction reacton A.Factor EIR t A E/R (298)
number
2 O+O.20, 8 0X 10" 2060k250 1.15
4 ((tD)+ N O'+ N2 18x 10

11  
-(110k 100) 12

5 O(tD)+ O2 O+O 32×x 10
"  

-(70; 100) 12
6 NO O NOO2 + 2  2oxl0-t2 1400±200 1.2
7 NO+O-NO+0O 65 X10

"  
-(1204t120) 11

8 NO, 0 3 - NO, +0O L4X 10-" 2500* 140 1.15
9 NO + NO, - NO, + NO, 1.7 X 10-" -(150± 100) 1.3

12 N20 + N2 - NO2 + NO + Nj 5.7 X 10" 10600
13 O(ID) + 1120. O + OH 22X10

"
t
0  

0*t100 12
14 O(tD) + CH,-Off +CH) 1.4 X 10-" 0± 100 12
15 O(

t
D)-CII..- 112 +- IC0 1.4 X 10-

" 
tR 0±100 12

16 O('D) + III - O44 I ix1 
0

1 0 ±100 1.2
17 H+O,-OH+Oz 1, 4x 10-1

0  
470± 200 125

19 OIO+ 0 3 -1102+ O 1 ,6 X 10-" 9404 300 13
20 

1
lO +0,- Oil +20, u, x 10t 500+500/- 100 13

21 Off+0-11+O 22x10" -(120 4100) 12
22 1lO + . - Oftt , 3 O -1 1t -(200± 100) 1.2
23 H20 

4  
0 - Oil + 

1
IO 1.4 x 10'2 2000± 1000 20

24 Ol + CH4 - CH3 +112 O 2.3 x 10-
"  

1700 ± 200 1.2
25 1102 4 NO - Oil+ NO. 3.7 x 10-

"  
-(240 ± 80) 1.2

26 OHf + CO - CO2 + it 1.5 x 10-lt x(I +06p) 0±300 1.3
27 Ol+l+2 -11 l+1 5.X x 1 0 ' 12 2000± 400 1.2
29 Off 1+ IINO - 11 20 + N03  13
30 Ol+

1
1Oa2 -ItllO t 3.3 x 10l" 200 + 100/- 300 1.3

31 Ol + 102 - 110 + 0 4 6X 1 0 -l' -(230± 200) 1.3
32 Oll+ OH - I1

0
-O 4.2 X 0-

"  
240 ± 240 1.4

33 Oil +1 CO- 110 + ICo 1.0 x 10O1 0 ± 200 1.25
34 lOt 'lOt + 11202 + 02 2.3 x 10" -(600 ± 200) 1.3
36 It 11 1 - III + O 7.3 x 10

"t2  
0± 200 1.3

37 if + IlOI - l0 O+0 3 2 X 10 t" 0±,200 13
38 If + IO OI+ Ol 7 0 X 10" 0±'t200 1.3
39 IlCO + 0 - Off + IICO 3.4 x 10" + 1600± 250 125
41 Cll 0 4+ NO - CIIj0 + NO, 4 2 X 10 -t -(180 ±180) 1.2
42 C11,02 + 1O -- CIIOOtl +0,O2  1.7 x 10-1' -(1000±t 500) 1.3
43 C~llO00l l+01 - CH102 +1.O 1.0Ox 1011 0 ± 200 20
44 ClI, +0'- IlCO+ 1IO 3 9 X 10-l' 900 ±3 00 1.5
45 112 + OO0II+11 88X10

"
1 4200

47 IINO, + M - 1lOt + NO2 + NI 1.0 x 10 t4 10350
48 IIN04 + OIl- 110 + O +-402 1,3 X 10 -

l
' -(380+ 270/- 500) 1.5

49 IICO + 02 - CO + 'lot 3.5 x 10-l' -(140 ±140) 1.3
50 C2I t 4l,+1- C2I11, +1120 1. x 10-11 1100 ± 200 1.2
51 Cil1 O + NO - C2llO + NO2  4 2 x 10 -'2 -(180 ± 180) 1.2
52 Ct2lO + 01 - 3 0Cl1O + 11O 1.2 X 10

1
) 356 ± 300 3.5

53 C211, + 'lOt - C2llOOI + 02 6.5 x 10-1) -(6504±200) 1.3
54 CICI0 + oil l CIlCO + illO 60)4 1 0 -11 -(250±200) IA
55 CI ICO, + NO - Cl ,+ CO, + NO2  2.4X 10"

t

57 PAN +NI - Cl lCO + NO,, M 6.3 X 10-
2

12785 1.5
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TABLE 3 (continued)

Model Tirree-bodyreacion Rate
Reaction n-
Ntimber

1 0+ 0, +Ni Oa,+ N (6 0 ±0.5) Xt0 2.3±0 5
3 0 + 0+ N -0,+ N 4 27 X10-

t0 NO +0+ NI-NO, + M (9 oj2 0) X l0' 1.5±0.3 (3 0 j 0) X10- 0 ±1
I I NOa+NOa4MINOa*M (2 2 *05)X 10--' 4 3±1.3 (t0 8) X 0'- 05±05
18 i+ 0, + m HO, + N (57±0.5)X 0-11 16±0O5 (7.5±40)X 10-" 0 ±1
285 i 5+ N0 2 + M- INO + M (26±0O.3)X 10-v 3 2±0.7 (24±12)X 10" 1.3 ±1.3
35 Otl+OlI +NM- 20 2 +m (69t±30)x 10-" 08+20/-O8 (i.0±5)X 10-" 10± 10
40 CH,5 + 0'+ NfCt1.3 O+N (45 ± IS) XI0- 20±1.0 (I 5±O2)X 10-" 1.7 ±1.7
46 110, + 02+ M -HNO, +M (It±03) Xi10-3 3.2±t04 (4 7 jL) X 1~

0  
1.4 ±14

36 CII5C+ O + N4-PAN + N 4 X1019

A:- ko(2')lmj 0 6 11' lk,i nrAd~.5)r~ A(T) - A.1(T/30Y' and A .(T) - k(T300)-'.

impression for this reacrion is name1f three terms given in ref. 8.
Use oseralt 1(298).5..

is a bimolecular rate coefficient between Species i lion of mixing ratios or flux values for NO and
and j. The factors are determined from eq. 3 by CO and for 03 deposition velocity. The 'unper-
running the time-dependent model to equilibrium, turbed' chemical profiles simulate 'Clean Con-
e . to periodic 24-hour behavior, and evaluating tinental' northern mid-latitude regions: 03 - 44

all the averages in (3). All the species concentra- ppbv, CO - 135 ppbv, NO, - 0.20 ppbv. with
tions illustrated in this study arc diurnally aver- Cl- 4 = 1.70 ppmv at the surface. Vertical profiles
aged mixing ratios, x,- of 0j, CO, NO, and HN0 3 appear in Fig. 1.

Looking at eq. 3 it is clear that ihe diurnal
factor (DP) 11 depends on equilibrium concentra-
tions of species, i.e. composition, and that as the Clean Cean-etal (45 N1)
calculated equilibrium composition changes in rc- I
sponse to a different set of rate coefficients, thz.
factors also change. Thus, in performing the Monte
Carlo study, a tinie-dependent run must be carried/
out to obiain factors self-consistent with the diur- 00 /Pbv
nally averaged R, from steady-state calculation. ..... 0O (Ppb)
The initial 'perturbed' set of rates coefficients is No fttv
always run with the time-dependent model and t,
the diurnally averaged rates are supplied to the
steady-state model for final calculation of the
diurnally-averaged (or steady-state) concentra- -

tions.)
The expression 'unperturbed' chemistry refers 0 0 o aco20 300 400

to the atmospheric composition as simulated by lati Ration
the model with the standard set of 72 reaction rate Fig. 1. Verical profiles of 0j CO. IINO5 . and NO, typrcal of
coefficients at mean values (Tables 2 and 3). the relatively clean continentaiatid latitude troposphere. Con-
Atmospheric measurements are used in specifica. centrations are given in mixngratio by %olum(mole fracion.
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Monte Carlo calculations lognormal, depending on whether the parameter is
intrinsically positive or not. At the beginning of a

Method model run, values are selected from these distribu-
We vary the 72-reaction set of rate coefficients ttons for each parameter entenng into the reaction

for each model run as follows A given set of rate. Each run gives different values for the con-
perturbed rate coefficients is generated from a centrations corresponding to the randomly selected
random number generator and each perturbed run rates for that run. After a sufficiently large num-
is made with a different set of 72 reactions. The ber of trials (runs), histograms showing the per-
set of reaction rates is based on uncertainties in centage deviation of each species concentration
chemical rates as described in the JPL/NASA from its mean over all runs are obtained numen-
Panel 8 Evaluation [8) to derive corresponding cally for each species. We show results after 800
uncertainties in the species concentrations. runs. The computed means and variances for each

The perturbed reactions are used in the time- species are nearly constant as runs are added at
dependent version of the model, which is in- this point. The maximum difference tn the ratio of
tegrated for two days to produce diurnally aver- the standard deviation in the mean from the 700
aged rates (4) and mixing ratios. These mixing run results is for CH 5OOH which changed by
ratios are not 'converged' to equilibrium in that 1.6% after 800 runs. Smular calculations for stra-
the 24-hour cycle of each species is not periodic. It tosphertc chemistry carried out by Stolarski and
would take many days of integration to achieve coworkers show that convergence to 1-2% is ob-
this because several constituents (e g. 0, CO, and tamined after - 1000 runs 9,10].
PAN) have photochemical lifetimes over a week. Most of the reactions used tn the photoehem-
This is not computationally practical because each ical model fall into one of three categories, pho-
day of integration takes several minutes on the tolysis, bimolecular, and termolecular, as noted in
VAX 11/780 and attached processor. the discussion following eq. (1). The uncertainties

We have compared diurnally averaged rates in reaction rates are stated differently for each
computed after two and ten day time dependent category in ref. 8 which requtres some difference
model runs. The maximum difference as a per- in the treatment for each one.
centage of the imprecision occurs for the photoly- Uncertainties in photolysis rates used in the
sis of N20 5 (rate J12 in Table 2) and is 1.6%. Only calculations are given as an overall fractional un-
one other rate (rate 9 in Table 3) has a percentage certainty in the rate, rather than as measurement
difference as great as 1%. We do not expect the uncertainties in the various fluxes, cross secttons,
variances in species concentration computed over and quantum yields which determine these rates
a set of model runs to be sensitive to small errors (8]. The photodissociation reactions are given in
in averaged rates for each individual model, and Table 2. We have assumed a lognormal distribu.
this approximate averaging should be adequate, lion for the phololysis rates with a standard devia.

lion corresponding to the stated fractional uncer-
Assignment of rate coefficient uncertainties tainty for each.
Most of the 72 reactions used in the photo- Most second order rates are obtained from the

chemical nuodel have an associated uncertainty product of a rate coefficient and an exponential
given by the NASA panel evaluation [8). As noted factor containing the activation energy. The gen.
in this report, the assigned uncertainties are sub. eral expression for binary rates is
jective judgments of the panel and are not based. k(T) -A exp(-E/RT) (5)
on rigorous statistical analysis because there have
been an insufficient number of laboratory investi- where k(T) is the overall reaction rate is the rate
gations, coefficient multiplying the exponential factor, E

We have assumed that the uncertain parame- is the activation energy, R the gas constant, and T
ters entering into reaction rate calculations have the temperature. JPL/NASA (8] give uncertainties
simple probability density functions, Gaussian or in activation energy, AE, as well as an uncer-

l! .I L A
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tainty, f(298), in the overall rate at 298 K. The N2. Uncertainties are given for the coefficients
overah uncertainty at other temperatures is calcu- kom, and k and for the exponents n and in in
lated from the expression the temperature dependent factors. Since kojar and
f(T) -f(298) exp I AE/R(1/T- 1/298) 1 (6) kr must be positive they are assumed lognorm-

ally distributed, but the exponents n and in may
For purposes of generating perturbed binary rates be assumed normally distributed. The overall rate
for a Monte Carlo series of model runs we assume is thus a function of four random variables and
that the overall uncertainty given in the the nature of its distribution does not follow im-
JPL/NASA Panel 8 Tabulation is given by an mediately from the assumptions, as does that of
uncertainty in the rate coefficient A in eq. 5 with the binary rate, though it is clearly always posi-
A being lognormally distributed. The temperature tlive.
dependent factor in eq. 5 is always evaluated at
the standard value of the activation energy. The
JPL/NASA [8) convention is followed in Table 3, RESULTS AND DISCUSSION
which means that (298) - 1.2 signifies a 1 -
sigma uncertainty of 20%. Note that the column Reaction rate uncertainties
labeled f(298) in Table 3 is the overall uncertainty
and is not necessarily identical to that which would Variability in some of the reaction rates im-

be computed using the stated uncertainty in portant in the odd hydrogen balance of the tropo-

activation energy. Temperatures in the 1-dinlen- sphere is shown in Fig. 2. Fig. 2a shows the

sional model decrease with altitude and we have distribution in the rate of photolysis of ozone to

chosen to evaluate the binary rate uncertainties in produce O('D) which initiates most tropospheric

eq. 6 at the surface temperature of 288 K. This is a photochemistry:
conservative assumption in that it gives smaller O - hv(- 295-310 nm) - O(iD) + 02
rate uncertainties in model mixing ratios, but it is
reasonably good for evaluating uncertainties in the The stated uncertainty in this rate is 40% and a

boundary layer in which we are primarily inter- lognormal distribution is assumed for photolysis

ested, reactions. Here apparent lognormality and an un-

The general expression used to evaluate termo- certainty close to the one given in JPL/NASA (8)
lecular rates is more complicated (Table 3). The are recovered from the numerical results. Fig. 2b

general form of a termolecular reaction is A + B sho s the distribution of the O(ID) + H20 tea-

+ M - AB + M where M is a quenching third tion which is the primary source of tropospheric
body. Low pressure, ko, and high pressure. k.Q, 0H.
body.io raesure, n nd ghe ure. . Fig. 2c shows the distribution of the termolecu-
limiting rates are given in the form lar rate for the reaction OH + OH + M - H201 +

ko(T) - koa(T/300) " , M forming hydrogen peroxide. Although the dis-
tribution appears somewhat skewed towards posi-

(T) - k -°(T300)'" (7 t tive values we cannot characterize it as lognormal

and these are combined in a rate expression appli- since, as noted previously, it results from a rela-
cable to general conditions of atmospheric tem- tively complicated relationship among four ran-
perature and pressure by dom variables. Indeed, the terniolecular distribu-

ko(T)[M] tions we have examined appear to be more sym-
k(z) - +k(T)[M/k(T) metric about their means than would be the ease if

strictly lognormal.

X0. 6 ti~l k,*) ,(r~l~l/t <str5li) l  
(8) Computed constituent uncertainties

The factor IMI in eq. (8) is the concentration of
third bodies involved in the termolceular reac- Fig. 3 shows the calculated vanability in odd
tions, specified by the model as the sum of O, + hydrogen species, OH and HO1, and in hydrogen

L
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peroxide, H202 . All deviations greater than 100%
above the mean are placed in the rightmost verti-
cal bar on these histograms plots. We expect the
variance of OH and HO, to be relatively large (a) ix,,O
since they participate in more reactions than any ,
other species. Hydrogen peroxide is readily ab- S- V- 0028 Mt,

sorbed in cloud droplets and may be an important ss
component in the liquid phase production of
sulfate and consequent decrease in droplet pH
111,12. We note that wet removal of H 20, is 1.

included in our model continuity equations for t 0
H202 as a first order rate coefficient but this rate
is not varied. We have previously explored the
possibility of increases in future peroxide levels 02

resulting from projected changes in methane and
CO emissions and from possible climate changes 0 -
[3,131. We estimate global cha.nge for H20 2 re- F- -- , w-
sponding to continuing 0.5-1%/yr COand CH,
increases to be about 20% over the ,ext fifty years (b) S 5.Ar NO,

(13]. The present study ,oulI ;mply that this Soo A .o om
change is smaller than the model's precision for o- o.21%
computing H202 under a given set of conditions.
Fortunately, we can make atmoipheric measure-
ments of key species (03, CO) to better precision 06
than we compute in the Monte Carlo study and It
this suggests that we can improve on the calcu- 04.

lated uncertainties for all species by constraining
the model with observations (5). s2

Fig. 4 shows the calculated variability in mem-
bers of the odd nitrogen family, nitric oxide (NO), 0
nitrogen dioxide (NO 2), and nitric acid (HNO3 ). . .50 0 50 0

The uncertainty in HNO is one of the smallest 0t",', F,=i MO.o ,,mwi (%)

occurring in our calculations. As for H20 2, uncer- (c) sle. HSNO
tainties in HNO3 due to rainout are not included wo '~ y - sas 00,
in this study. These are likely to substantially 0-6%
increase the HNO3 variance [14). 08.

Fig. 5 shows the calculated variability of ozone
(0,) and carbon monoxide (CO). These species
are less reactive than free radicals, peroxides or Z
acids. We expect smaller variability for 0 due to 04
rate uncertainties because external sources of 0 3
as well as chemical reactions, are important to its 02
atmospheric distribution. A fixed flux into the
troposphere is assumed for ozone at the
tropopause. The uncertainty at the surface is 17%. 00 .50 V so 0
The uncertainty for CO is higher, -31%, even ,* 'me, cc,,twi()
though an upflux of CO is very important to Fig. 4. Histograms of odd nitrogen species distnbutions at 0
boundary layer CO. The reason is a fractional km after 800 model runs.
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ozoe SUMMARY

Estimated imprecisons in chemical reactions
10 -rates important in tropospheric photochenistry

have been used to estimate the resulting uncer--'1 tainty in model calculated trace species distrbu.
tions. A Monte Carlo approach is used with tabu-
lated kinetics imprecisions specified for 72 reac-
tions. The tabulated imprecisions are reproduced

,4 closely by the model after several hundred model
runs and the propagated uncertainty in 24 trace

2 constituents is calculated. Uncertainties for ozone
and carbon monoxide are 17% and 31%, respec-
tively. For CO this is 2-3 times greater than the

0 4 0 58 10 20 to4O imprecision which typically affects CO measure-
MAN×3 Rats ments in the atmosphere.

(a) Odd nitrogen uncertainties are - 20% for NO
and NO 2 and only 6% for HNO3 because impreci-
sion in precipitation scavenging, an important loss

C1bo ooue for nitric acid, has not been included in the study.
Hydroxyl radical (OH) has a computed uncer-

10- tainty of 31%, whsich soniewhat limits the model
assessment capability for precise evaluation of
oxidant changes.

S In a related study (51 we report on correlation
6analysis between rates and species to identify those

reactions which contribute most to the variance of
selected species. This also helps in developing

4 n-situ measurement strategies to reduce the over-
all computational variance found in the present

2 , study and in identifying the photochemical
processes at which further laboratory investigation

. .might be most effectively directed.0 10 200 30 400

Sx'Og Rabos
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Abstract

Jur.. P.C. and Lason. R., 1991. Analysis of chemical structure-bological acrirty relationshps using clustenring methods.
Chonionrincs and Intelligent Laboratoy S)stern, 10. 81-83.

The importance of calculating clustering tendency of a data set as pail of a complete methodology is described. A new method for
e,aluating the clustering tendency is illustrated with atificially clustered. random. and actual chemscal data sets. This new index is
shown to be mote useful than the original one.

Cluster analysis is a usefil, and increasingly provided by a molecular mechanics routine to see
popular method for exploring data represented in if they fall in natural subgroupings.
high-dimensional spaces. Questions that can. be The exploration of multivariate data via cluster-
approached using cluster analysis arise in phar- ing involves many steps: data collection, initial
maceutical and agricultural chemistry in the con- screening of the variables, exploration of cluster-
text of structure-activity relatieriships. For exam- ing tendency, application of clustering strategies,
ple. a common exploratory approach to SAR is to and validation and interpretation of the results.
retrieve those compounds which have a particular Often the entire process is iterative. Once a data
structural fragment from a large data base of set has been selected for analysis, the examination
compounds. Then it is of interest to seek subsets of clustering tendency prior to the development of
of compounds with structural similarities, that is, clusters is important because it allows the experi-
clusters. Other examples come from toxicology, menter to be sure that the clustering exercise has a
where it is of interest to examine sets of com- chance of finding real clusters. Most algorithms
pounds for structural similarities so that these desi;ged to find clusters will find some regardless
similarities can be related to toxicity. A third or,'the structure of the data. This work focusses on
example involves the examination of a numbertof ;ie evaluation of clustering tendency via Hopkins
possible conformations for complex structures as statistic and a recently proposed variation of it.

0169-7439/91/03.SO 0 t99t - Elsevier Science Publishers B.V,
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Hopkins statistic has been shown previously to be Tests of this modified Hopkins statistic with
a very good method for assessing clustenng ten- two-dimensional and' ten-dimensional artificial
dency [1]. data sets designed to be extremely clustered, and

Hopkins statistic [2,3] is intended to assess with an eight-dimensional chemical data set, show
whether or not a given data set differs from a set the ,nodified statistic to be more conservative in
of uniform random numbers. The statistic is its estimation of clustering than the original
calculated with the following equation. Hopkins statistic. The modified statistic also is not

sensitive to outliers.
U, U: random to real The chemical example used for testing the mod-

U + ;I/V W: real to real ified Hopkins statistic consists of 143 acrylate
compounds with the general structure shown. This

Each U, value i., the distance from a randomly set of data was analyzed in the context of a
selected position within the sampling window to structure-toxicity relationship investigation 151.
the nearest data point, and each IV value is the Each of the 143 acrylates was represented by a set
distance from a randomly selected data point to of eight calculated structural descriptors which
its nearest neighbor data point. The sums are over were chosen to best represent the structures. A
the number of sampling points, which is usually principal components plot of the data shows no
selected to be 5% to 10% of the number of points apparent clustering. However, the data do show
in the data set. The U positions (the sampling substantial clustering tendency with the original
points) are chosen from a uniform distribution Hopkins Statistic: t - 0.82. When the original
within the sampling window. H has values near Hopkins statistic was calculated for scrambled
1/2 for unclustered data, that is, data with a data, H - 0.77. This shows that there is substan-
uniform distribution. H has values greater than tial clustering tendency due to the univariate dis-
1/2 for clustered data, and 1.0 is the upper limit tnbutior. of the eight structural descriptors. The
for extremely clustered data. For reasonable as. value for the modified Hopkins statistic was H' -
sumptions, H has a beta distribution, so the prob- 0.65. This shows that the multivariate data contain
ability for rejection of the null hypothesis (no more information than merely their univariate dis-
clustering) can be quantitatively stated. For exam- tributions. This data set was analyzed for cluster-
ple, for 15 sampling points and a value It - 0.65, ing using the well-known K-means and Isodata
the probability of rejection of the null hypothesis clustering method, and five stable clusters were
is 0.90. found. These five clusters made good sense when

The ordinary Hopkins statistic has several the structures of the compounds in each class were
shortcomings. One is its sensitivity to the size of considered by knowledgeable chemists and
the sampling window and hence to outliers, toxicologists.
Another is that the criterion of comparison to a 0
uniform distribution is weak since almost any
measured or calculated data will be more clustered 1t1C .. ,. R
than the uniform distribution. O_

We have investigated (41 a modified form of the
Hopkins statistic, t1', designed to overcome these
shortcomings. Instead of choosing the sampling The modified Hopkins statistic can also be
points from a uniform distribution, we choose used for feature selection, that is, for selection of
them from the aciuai:,mivariate distributions of these variables which support clustering in a data
the data under hivestiai.on. This allows us to set. Preliminary studies have shown that the use of
investigate whethclr the clustering tendency .ob- partial'sums of U, and I1 can be used effectivly
served for the data set is-due to the multivariate for deletion of the least useful variables thereby
nature of the observations or due only to the focussing on those variables that best support
univariate distributions of the variables, clustering.
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Cluster analysis shares with other scaling meth- ered. (This disadvantage of H is shared by prn-
ods (such as prncipal components, factor analy- cipal component analysis, where scale changes can

sis) the ideal that there is an underlying structure influence principal values and principal vectors in
which influences observed variables, but which is complex ways.) Lawson and Juts [3 are aware of
n\t entirely revealed by these variables. This un- this problem, and standardize their variables be-
d(ilying structure, as compared to the observed fore clustering. However, if sample standard devi-
variables themselves, may also be more highly ations are used for standardization, rather than
predictive of other phenomena. For example, the actual population standard deviations, the dis-
structural similarities of sets of compounds may tribution of the Hopkins statistics is no longer
reflect underlying chemical structures that are re- necessarily a beta distribution (even if reasonably
lated to the biological toxicity of these com- large samples are used to estimate standard devia.
pounds. Thus, clustering is seen as a valid alterna- tions).
tive to regression analysis as a way of predicting A second possible disadvantage of the modified
these other phenomena (e.g., toxicity). Once clus- Hopkins statistic is that it concentrates on cluster-
ters have been identified, analysis of variance can ing as a multivariate phenomenon (i.e., due to
be used to demonstrate the predictive ability of dependence of the variables). This excludes from
the clusters. A similar approach has been used in consideration clusters that can form in the multi-
educational research to find predictors of im- variate space because the individual variables
provement in mathematics achievement of junior themselves show clustering (multimodality) in their
high school students [1). marginal distributions, while yet being indepen-

Although the modified Hopkins statistic dis- dent. Since the ideal in scaling is a latent structure
cussed by Juts and Lawson 121 can be useful in which relates the observed values, and this latent
determining whether multivariase data reflect un- structure is of primary interest, this may not be a
derlying clusters, it has some disadvantages. One serious defect. However, it does raise the concep.
disadvantage is that this statistic depends heavily tual question of what constitutes a cluster.
on the scales of the variables measured. Simply It is to Juts and Lawson's credit that they have
changing the scale of measurement on any single eliminated the major disadvantage of the original
variable measured will change the value of 11. Hopkins statistic-namely, the insistence on as-
More generally, the value of 11 is affected by the suming that unclustered variables were indepen.
standard deviations of the variables being constd- dent and uniformly distributed. Few variables en-

0169.7439/91/0330 0 1991 - Elscvier Science Publishers B.V.
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countered in nature have uniform distributions, theory that is currently discussed under the
Although it is possible to transform marginal dis- terminology 'bootstrap analysis' [,5j. There is
tributions so that they are uniform (by the prob- also a resemblance between the sublsampling of
ability integral transformation performed variable data used in the Hopkins test and the resampling
by variable), such transformations destroy com- methods used in bootstrap analysis. Finally, as
parability of distances to nearest neighbors It is demonstrated by Juts and Lawson, one can see if
these distances between data points that most the clusters found make sense in the light of
intuitively convey the notion of 'clustering'. (If all existing chemical (and biological, in the case of
that is meant by clustering were lack of indepen- toxicity) knowledge. If the clusters successfully

dene, then tests of independence based on either predict other phenomena (e g, toxicity), this is
the Kolmogorov-Smirnov distance between multi- further evidence that such clusters are not artifacts
variate distributions or Pearson chi-squared tests of the data.
of independence based on grouped data in con- As Juts and Lawson so clearly show, cluster
tingency tables could be used. The distances analysis has the potential to yield important in-
utilized by these tests have little resemblance to sight and direction in the study of classes of
Euclidean distances between data points.) chemical compounds.

Besides use of the Hopkins statistic, there are
other ways that the 'reality' of observed clusters
can be demonstrated. Using more than one dis- REFERENCES

tinct method for searching for clusters (e.g., K- I J.E. Lockley, A comparative study of clustcr analysis and
means and Isodata, as used by Jurs and Lawson MANCOVA in the analysis of mathemaUcs achevement
(2) in their chemical data) is one good method; If data. in UJ. Gleser, M.D. Perlman. SJ. Press and A R.
different search methods arrive at similar (num- Sampson (Edaors), Contributions to Probabilty and Stalls.

tie. Essays in lonor of Ingram Olkin. Spnager-Vertag. New
bers of) clusters, one can be less worried that the York, 19S9, pp. 241-270.
clusters are artifacts of a particular search method. 2 P.C. Jura and R.G. Lawson. Analysis of chemeal structure-
Additionally, one can hold back a randomly bilogical activity relationsnps using clustenng methods,
selected subset of variables in an initial clustering Chemonemirics and Intellgent Laboratory Sstems, 10 (1991)

81-83.search, and then see if adding these variables 3 R.G. Lamson and PC. Jurs. New index of clustering tend.
changes the conclusions. (This approach assumes ency and its apptication to chemical problems. Journal of
that no small subset of variables by itself defines ChirnicallnformatonandComputer Sciene.30(1990)36-41.
the true underlying clusters.) Instead of withhold- 4 B. Efro. Thejackknife. the bootstrap, and other resampting
ing variables, one can randomly divide data points plans, Socirty/or IndustrialandAppliedMathematos. CBMS- National Sclence Foundation Monographs, 1982. No. 38.
(cross-validation) into two or more groups and see 5 B. Elron and G. Gong. A leisurely look at the bootstrap, the
if similar clusters arise in such data sets. This jackknife, and eross.valdation, .Ameriean Statistician, 37
approach is associated with a formal statistical (1983) 36-48.
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Abstract

Browns. S D.. 1991. Rapid parameter with incomplete ctemical calibration model Chemnometricn and Inteli gent Laboratory Stntens
10: 87-105.

The use of calibrations models to predict atialyte ccnscentrationss in samples shtowing Aespoises from poortly calibrated components.
or samples showing drift in the instrumental response function. is seldom successful. These incomplete calibratton models cannot
account for vaniations not encountered in the calibration step. Simple modifications are possible which remedy this difficulty for
Oatasicl least squares (Ct.S) regression. by using seqautial regression for the prediction step, extensians are possible wisch lessen
errors due to overfitting. and Permit predictton of uell-modelled components in the presence of unmodelled components
Implemsentation of the sequential regresson is consenienlly done through use of the Kalnman filter, tUse of filter models for dynarmc
and measurement also permits correction of dnift ot vanious types. The ate of CI.S calibration with Kalman filter prediction is
presented and tested with simulated spectroscopic data. Compansons, are made to other calibration and predictian methods,

INTRODUCFION Surentents made on predictors. Care in collecting
calibration data and generating a caltbration model

Care in the calibration step is very important is repatid in the range over which the calibratton
(or a successful multicomponeitt analysis. During remains valid during piediction.
the initial phase of a calibration, when standard Even with great care in calibration, there is still
mixtures of analytes are measured, effort must be the likelihood of instrumental drift wvith time, and
made to calibrate over the wtdest possible range of the chance that small changes in the nature of ttne
instrunmental Conditions, analyte concentrations, sample may appear in the form of unexpecF*ed
and potential interferences. From these calibration (and uncalibrated) components. Drift and unmod-
data, a calibration model is generated which ex- elled responses present two significant challenges
plains as msavh as possible of the variations seen to calibration schemes. Both can be regarded as
during the Calibration step. The model is used to umnoodelled components in the calibration, but
predict analyte concentrations from further mea. the effects of these unmodelled components are
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seen dunng prediction. The development of chemistry, this algorithm has been extensively used
calibration methods that are more robust to the for analysis of multicomponent data [5). Previous
effects of instrumental drift and unmodelled corn- work from this laboratory [6,71 has demonstrated
ponents would greatly extend the useful range of that modified Kalman filter methods may be ad-
many calibration schemes. vantageous for multicomponent analysis in the

Considerable research has been directed at presence of unanticipated and unmodelled re-
methods for improving the modelling of the sponses in a multicomponent signal. Some work
calibration step. Methods based on regression of on drift compensation of univanate systems [81
data onto factor models or on the relation of 'has also appeared.
latent variables have been developed to improve This paper demonstrates that one form of
the calibration process by lessening the effects of calibration, classical least squares (CLS) calibra-
noise in the calibration model [1,21 These meth. tion, is directly compatible with ordinary Kalman
ods have shown success in generating very reliable filtering, either in vector or in scalar (sequential
models for the calibration step, but they are less regression) form. Additions to the CLS calibration
successful at predicting concentrations for multi- model which account for random drift and for
component samples, especially those that are ob- u nmodelled responses are presented and dis-
served under conditions far removed from the cussed. All methods are tested with simulated
conditions of ci.iibration. Other methods, for ex- spectroscopic data.
anple those based on rank annihilation, might be
more suited to treatment of chemical measure.
ment of samples containing well-modelled compo- THEORY
nents coexisting with unknown contaminants (3).
Because these methods presume identical spectral
or temporal behavior for any well-miodelled com- For analysis of a set of compounds contained
ponents, so that second-order or higher data can in a mixture, any of the standard methods of
be rank annihilated, they are more suited to arrays multicomponent calibration can be used. CLS
to bilinear spectra than to time-varying calibration calibration, sometimes called K-matrix calibra-
systems, which may contain tihnejitter from run to tion, is convenient for use here because of its
run 11. That jittermakes registration of the bilin- assumption of the least-squares causal model re-
ear arrays uncertain, and it causes difficulties in lating the measured response A, of standards to
the rank reduction process. Drift in the instrumen- their known concentrations C,
tal response is also problematic to rank reduction
methods because of the lack of reproducibility of A, - CK + e (1)
the time varying responses of standards and sam- where the ii X p matrix K relates the in spectra
ples. collected over p sensor channels to the in X n

The prediction step can be considered a time- concentrations in C,. From the calibration step.
series process, and it seems reasonable to apply where both A, and C, are known, matrix K is
methods intended for time series analysis in at- easily obtained from
tempting to.reate calibration models which are I
more robust to errors in the prediction step. Since K (C,"C,)CrA. (2)
the time-series involved ate multivariate, given the The columns of tne 'K-matnx', K, are estimates of
multicom:.onent chemical models and the multi- the pure-component spectra of species involved in
component responses observed, a multivariate ap- the 6alibration. Once the calibration is completed,
proach is appropriate, the matrix K can also be used to estimate the

One multivariate, time-based approach that concentrations of analytes C. in unknown sam-
might be examined is the Kalman filter. Although ples, since
many of its time-series properties have not been
used to full advantage in applications in analytical C - AK(KKr)

- (3)
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The accuracy of the estimates C, obtained from In these equations, a(k) is the weight given to
the prediction step depends on the adequacy of observation A,(k), and L(k) is the correction
the calibration model K. and the presence of factor used to update C(k) and P(k). Careful
additional, unexpected components altering the choice of appropriate values for a(k) will reduce
multicomponent response A.. These can be ad- the problem of overfitting mentioned above. The
ditive, as might be the case when additional con- calibration matrix K(k) can be calculated directly
stituents are present, and these constituents re- from eq. (2) above, or it also can be obtained by
sponses contribute to the multicomponent signal. application of sequential regression of the spectra
They also might be multiplicative, as would be the obtained during calibration runs onto the stan-
case when linear or proportional drift caused a dard concentrations, using a regression approach
change in the instrumental response expected for a analogous to that in eqs. (4)-(6).
given concentration of analytes. Sequential regression requires initial guesses

While calibration based on classical least- C(0) and the covariance matrix P(O), a measure
squares is well-understood, since it is one form of of the uncertainty of the initial guess Ca(0). The
ordinary multiple linear regression, it may not covanance matrix has units of concentration
always be the best method for calibration. Some squared, and its diagonal elements are the van-
of the undesirable features of a calibration based ance associated with each element of the con-
on CLS regression include possible overfitting of centration vector C.
data to the calibration models, where parts of the With correct regression models, the sequential
unknown response are fitted to noise in the estimates C,,(k) quickly become independent of
calibration models (1]. the initial guess ,(0), provided that a 'reason-

able' value is selected for P(0). Values of about
Sequential regression for prediction 1-100 times C(0) work well for the diagonal

values of P(0); the off.diagonal elements may be
One way to alter CLS calibration is to perform set to zero. Larger values of P(0) typically aid in

the regression of unknown response onto models getting rapid convergence. When P(0) is selected
sequentially, rather than in a single step. Sequen- too small, biased results for C will result from the
tial regression of data onto the classical causal sequential regression (91.
model of equation 1 is well-established 19-11). While sequential regression may not always be
The algorithm is given by three equations, one for as computationally efficient as ordinary regres-
the update of the regression parameters (here, the sion, it sometimes can be more computationally
unknown concentrations), one for the update of efficient, depending on the number of parameters
the covariance of the estimates, and one for the to be fitted, the dimension of the measurement,
correction of the current estimates C, and P to and the weighting factors. Cases where sequential
account for the information contained in new regression has a computational advantage over
data. If the regression parameters are contained in ordinary regression arise where the few paraeters
the n X I vector C with covariance P. the recur- are to be fitted to a high-dimension measurement,
sion relations, expressed for the ';th channel of a and where weighting data are available for use in
p-channel spectrum, are the fitting: this situation is common in the analy-
C.(k) - (k - 1) + L(k)[A(k )  sis of multicomponent data in analytical chem.

istry. S.quential regression also offers other ad-
- Cj(k)K(k)j (4) vantages. Two of these advantages are the elimina-

P(k-1)K(k) tion of the need for matrix inversion, and the
L(k) - 1a(k) + Kr(k)P(k- )K(k) (5) possibility of using prior information on the val-

us and/or distribution of C. and P. A third
P(k)-P(k-1) advantage is the ease with which the regression

P(k- 1)Kr(k)P(k- 1) problem can be recast into forms suited to analy-
l/a(k) + K'(k)P(k - 1)K(k) (6) sis by regression methods based on loss functions

other than simple least squares.
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Within a Bayesian framework, for example, C, namics (eq. (8)) is an identity in this analysis, and
can be considered a random parameter vector with because Q(k) - E4w(k)w(k)I - 0 and R(k) -
some prior distribution, and the set of observa- E[v(k)vT(k)J - I/a when the system noise is zero
tlons should be correlated with C,. The posterior and the measurement noise is defined by eq. (7)
probability density function for c is.desired at above. Use of Kalman filter methods therefore
some point k, that is p(C IA). The estimate &a offers a general, flexible framework for classical
can be obtained from the distribution; a common least squares calibration and prediction, since
approach is to use the value for which-the distri- classical least squares can be taken as a subset of
bution attains a maximum - the maximum a the more general filtering approach, with identity
posteriori (MAP) estimate, For a symmetric distri- systems dynamics and uniform weighting.
bution, the MAP estimate coincides with the mean
of the distribution, and it is also the value-that Modeling drift in CLS prediction
minimizes the parameter error variance E(C.-

)(q - 6)r . The problem is to determine the The systems dynamics matrix F(k) of the Kal-
evolution of the density function (or its mean) man filter need not be identity, however A model
with added data. In general, solution of this prob- for drift can be used to describe filter state dy-
lem is not possible, but if measurement noise e is namics, thus extending the CLS calibration model
taken as Gaussian, an exact solution is possible. to track drifting multicomponent systems. Ran-
Under these constraints, it is found that optimal dom and linear drift models are believed to de-
weighting of observations is given by the relation scribe many chemical systems [8). A drifting

parameter X is generally described by a linear
Ila (k) - EI(e(k) - (k))(e(k) - equation

(7) X(t) - X(t- 1) + d(t) (10)
Given this definition of the weighting, the sequen- where d(t) is the drift. Random drift occurs when
tial regression can also be cast into a form amen. d(t) is a random parameter, while linear drift
able to use with the scalar form of the Kalman results when d(t) varies systematically with time.
filter, with system dynamics model If the state is defined as X(t) - (q,(t), d(t)), this

X(k + 1) - F(k)X(k) + w(k) (8) systems model leads to a simple systems dynamics
model, namely

and a mcasuremaeit model I(t)l I [1 [ C(t -1) +

z(k) - Ir(k)X(k) + v(k) (9) 1 d(t) J - 10+ () (11)

where, for simple K-matrix prediction, the filter with the measurement matrix as the time-indepen-
state X is the vector C, the filter measurement dent quantity
matrix 11 is the calibration matrix K, the filter
measurement z is the spectral datum An, and the 11 .IK (12)
filter noise parameter v describes the calibration 0OJ
measurement error e. If the filter dynamics matris, This dynamic model is observable if matrix
is set to identity for this time-dependent problem; (HFrll(Fr),H ... (Fr) - 1 

is of rank n for the
and the filter systems noise w is taken as zero, eqs. n-dimensional state vector X [11]. In this instance,
(4)-(6) may be seen to be identical with the up- this matrix is of full rank if K is of full rank, and
date equations from the scalar Kalman algorithm if duplicate measurements are made on each sam-
(eqs. (A3)-(AS) in the Appendix), where the vec- ple, so that drift variables in d can be char-
tor quantity L(k) is the Kalman gain. The filter acterized.
time projection eqs. (Al) for the state, and (A2) Other forms of instrumental drift are just as
for the state covariance, are identities in this:ex- easily modelled. With proportional drift, the re-
ample, because the filter model for systei' dy- sponse at some time t might be related to the
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response at an earlier time t - 1, by :(t) 1/y(t) dynamics matrix can be expressed as the time-
- -(t - 1) where y(t) is a time-dependent, random and state-dependent quantity
parameter. This leads to a systems dynamics equa. [yCtion that is now a function of time, t A'(Xt) 07 t  

t (17)

+ 1)-(t)Cu(t) + ii'(t) (13) and the measurement matrix is defined as the

Now, the set of parameters C. and the random time-independent quantity defined in eq. (12)
parameter y must both be estimaied to obtain C, above. This filter model is nonlinear, since the
in the presence of random drift. Define the system system dynamics depends upon the present value
state as X(t) - [C( t), -y( - 1)). Then the filter of the filter state. The states of this model may be
models are estimated by use of the extended Kalman filter

[5,9-111. In essence, the extended filter provides a
) W(t) way to linearize the systems dynamies matrix f

LY't-l)] o 0 t-l0)J about the current state estimates, so that

(14) f ,- r
to account for drift over time between spectral (18
measurements, and

(t=KC, + u (15) where fe0(t) and 1(t -1) are the current state
estimates in the extended Kalman filter, It is pos-

to describe the calibration during the prediction of sible to perform sequential regression over the
this particular spectral measurement. As discussed spectral data to obtain estimates of states Cu for a
above, the prediction step may be solved directly, given spectrum and time, then proceed though the
with a matrix inversion, to obtain state estimates extended Kalman filter to provide predictions of
C,, or it may be broken down to a series of scalar drift between spectral measurements, as described
relations defining the sequential regression of z above. If a good estimate of the system noise Q(t)
onto K is available, accurate estimation of the true con-

centrations and the apparent drift in concentra-
z(k) - K(k)C, + v(k) (16) tion should be possible using these simple modifi-

Such decomposition of the measurement vector : cations to CLS prediction.
into a sequence of scalar measurements :(k) is Examination of the equations for the Kalman
common in the engineenng literature 110,12). For filter (eqs. (A1)-(A7)) demonstrates that the equa-
the filter models described by eqs. (13) and (16), tions for updating state estimates are decoupled
the index t describes time between spectral mena- from those used to project states ahead in time.
surements, while index k describes scalar compo- There is no reason why other regression-based
nents of the measurement. The state X will be prediction methods wlich employ externally-sup-
both time. apd wavelength-dependent, but since plied initial guesses cannot be used in conjunction
only state estimates are the end of the update with the projection equations used in the Kalman
process are of interest, and not the evolution of filter. In this way, other calibration methods might
states during the sequence of s .alar updates, states be extended to account for drift between samples,
are given in terms of time for this model. State or for other time-dependent effects,
projection occurs between measurement of full
spectra, while state update occurs for each spectral Compensating for msnnodelled responses in predic.
channel. tion

In this treatment, it is assumed that spectral
measurement is fast, and that drift during collec- If the measurement model is in error, ordinary
tion of a spectrum is negligible. If so, the systems regression of data onto the spectral models will
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produce inaccurate estimates of concentration, noise variances. If the additional assumption is
With any recursive algorthm, there is also the made that R and Q are well-modelled, however,
possibility of skipping the processing of data that any modelling error detected may then be as-
is corrupted by the existence of poorly modelled signed to non-zero noise means For an adaptive
signals, This feature can be used to avoid regions filter based on matching of theoretical and experi-
of data for which models are in error, provided mental innovations, the error is attributed to devi-
some means of evaluating the model quality can ations in the presumed mean of v. This model
be found, error can be 'covered up' by artificially increasing

the measurement variance R(k), which effectively
Adaptive filtering for estimation of noise processes down-weights the parts of the spectral data that

are not well-modelled. Any regression done with
Several indicators exist for model quality. The incomplete models, however, is suboptimal, and

most reliable are based on the filter innovations, a the results obtained from adaptive filtering ar not
measure of how well the filter model can predict always minimum variance estimates. Operation of
new data. For scalar Kalman filtering, the filter this filter requires averaging of a set of innova-
innovations are defined as tions prior to comparison with theory, for better
P(k) - z(k) - H (k)X (19) statistical properties (61. The lag introduced by the

averaging process makes the filter slow to con-
where X(k k - 1) is the projected state at point verge to good estimates of states. Estimates ob-
k, based on information up through point k - 1, tained from the covariance-matching adaptive
One possible way to evaluate innovation quality is filter are very dependent on the initial guesses
to compare the observed innovations sequence used to begin filtering, and simplex optimization
i(k) with that expec!ed from the filter theory, has been needed to locate the best filtering results,
With a correct filter model, the filter innovations as well as to automate this adaptive filter [71.
are given by Il(k)P(k)Itr(k), assuming no corre- Because of these undesirable features, the covari-
lation of state and measurement noise. This quan- ance-matching adaptive filter was inot used here
tity accounts for the presence of error in z(k)
which is not part of the filter model 11(k). With a Adaptive filtering by innovations correlaton match-
correct model, the error in z(k) is random, and its
variance is R - Elv(k)Vr(k)]. According to the- ing
ory, for a correct filter model, with Gaussian noise
on the measured data, the filter innovations will Another check on model quality can be done
also be Gaussian. In addition, the innovations will by investigation of the autocorrelation of the in-
have a mean value of 0 and a standard deviation novations. Matching observed innovations auto-
of J(_R3. When the observed innovations deviate correlation over a part of the innovations se-
significantly front theory, model error must be quence to that expected from filter theory permits
present 111,13]. estimation of the noise variances required for the

The actual error being evaluated in any comn- filter model. For correlation matching, the auto-
o of ecorrelation function a is calculated for the innova-parison of observed and theoretical innovations is

error in modelling R, and not 1t, however. In the tions over some window of autocorrelation lags.
theory of the Kalman filter, it is assumed that, in Then, the experimental autocorrelation 0 is re-
addition to being Gaussian noise processes, with lated to the theoretical autocorrelation it by the
covariances R and Q, the noise sequences v(k) equation
and w(t) have zero means. Any error in modelling ,(kl) - 4(k,l)a + 7i(k,l) (20)
the measurement matrix 11 will be indicated by a
nonzero mean for v(k), while errors in modelling for datum k and lag I, where q(k,l) is a zero-
F will appear as a nonzero mean for w(t). An mean, white noise term, and a is the fitted param-
adaptive filter tests the modelling of the filter eter, taken here as independent of k. The noise
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variances are expressed as linear functions of a, so the filter innovations and state covariance matrix
that P. For a chemical system with no systems dy-

,N namcs, the variance in the innovations is expected
R(k) , Ri,, (21) to be a function of the measured variables z, the

i-i states X and the measurement model H according

and to the relation

v 2 2 1 2 12

Q(k) IE Q,, (22) 04k - "' 4 8i(k) 0 av(k)

The parameter a is obtained from the observed [ (k) (5
innovations autocorrelation by the sequential re- +°x, -k) (25)
gression which yields upon substitution the relation

x[,,(k) - (k)o(k)j (23) fo.,>
T =R(k) + X(klk - 1)QXr(klk - 1)

where the covariance parameter 0 is propagated +H(k)P(kIk- 1)ti(k)]i
4  

(26)
by This equation reflects the fact that the innovation
0(k) 0 O(k- 1) - O(k - l) Vr(k)IW(k) uncertainty a, must remain large when states are

not well known, but must be decrease to the limit
+il(k)0(k - 1)0r(k)J -D(k) of measurements noise when states are well known.
XE)(k- 1) (24) Since this relation is based on the knowledge of R,

it presumes accurate estimates of noise variances,
and where W is a weight matrix determined by the but is permits rapid rejection of incorrectly mod-
autocorrelation at lag 0 (14). elled data if knowledge of noise variances is avail-

While the computationally simpler matching of able. Data may be filtered normally, or rejected,
theoretical and experimental innovations can also based on comparison of the innovations v(k) and
be used to estimate noise variances, the results of the value of o,(k): innovations falling within ± 3o,
Monte Carlo studies show that noise estimates may be considered 'within those expected for a
from these adaptive filters tend to be biased [15). correct model', but those innovations falling out-
Further, with matching of observed and theoreti. side of this range are clear indicators of error in
cal innovations autocorrelation, it is possible to the nodel.
estimate both noise variances (R and Q) at once, In this connection. it should be noted that the
and these estimates are not strongly affected by standardized innovations n(k)
measurement model error in the data [141. Once
these quantities have been estimated, subsequent n(k) - i(k)o(kf

t  (27)
estimation of noise means (deviations of E(w) and may also be defined. The squared, standardized
E(v) from zero) can be performed. For this rea- innovations observed for filtering p measurements
son, innovations correlation was used to obtain with an n-dimensional state model distribute as
estimates of R and Q for filter studies throughout chi-square, with p - i degrees of freedom [101,
this work. W'th thisrelation, a simple test can be used to

evaluate model quality. A threshold can be set, so
Adaptive filtering by estimating innovations vart- that innovation values falling within the threshold
ance are filtered normally, while those falling outside

the threshold are ignored in the filtering, and
A third approach to adaptive filteri., makes affect neither the filter states or covariinces. For

use of the available error information carried in example, innovations well below the threshold
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Fg I Simulated spectral responses for components present tn muheleomponent data used for cahbration and prediction studies
Numbers 1-4 refer to the response function created for the three calibrated components and the unmodelled component.

31l, I have a fairly htgh probability of occurring the filter model is ncomplete. External optimiza-
by chance, while those with values greater than tion methods and extensive iteration are not
31 oI are not likely. In practice, though, an asym- needed when this adaptive filter is used to correct
metric threshold on innovations is desirable. Large filter moJels. When consecutive negative innova-
positive innovations imply model error (for chem- tions are encountered, however, at least one more
ical, responses with positive peaks), while large iteration should be performed to insure satisfac-
negative innovations might be expected as state tory estimates of states and covariances.
estimates are refined. However, several consecu-
tive, large, negative innovations may indicate that
state estimates may be affected by the model IMLEIENTATION
error. In this situation, it is necessary to alter the
covariance matrix P(k k-1), both to increase Programs for CLS calibration, partial least.
the uncertainty in state estimates and to increase squares calibration, principal components calibra-
o,. Measurements following this change are lion, and Kalman filtering were all developed in
processed as before. For work reported here, the the MATLAB programming environment. Kal.
absolute threshold was set to 3o, 1, and two con- man filtering programs included the linear drift
secutive measurements producing innovations be- filter, the proportional drift filter based on an
low 3 1 a, I caused reset of tib diagonal eleients of extended Kalman filter, the second-order adaptive
the covariance matrix for all state components filter based on covariance matclung, and the in-
contributing more than 5% of the predicted mca- novations variance-based adaptive filter for detec-
surement. This selective reset was done to avoid lion of model errors. In all Kalman filters, she
altering state estimates that were not likely to have Kalman algorithm (eqs. (A1)-(A5)) was used. The
been influenced by the model error. Calculation of MATLAB environment was run on an Apple
the innovations threshold is fast, and the filtering MacIntosh SE equipped with 68020 processor, 8
is set to that most of the data processed are Mbytes of memory, hard disk and a 68882 numeric
welt-modelled. For these reasons, rapid conver- coprocessor. No effort was made to optimize any
genc,of filter estimates is usually observed, even of these programs for execution speed.
though the filter is not strictly optimal, because Data for evaluation of these filter calibration
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Fig. 3. Imiosanons fromt adapnx Miterm& of innomp~etei, inoddkld data A. Innosute from rito ofe5mmber lidati
nubt a antim Szi of 40. and immnoiled .xcriponet as Srnta in Fig. 1. A sequetial regression cahheauon mas used to gemnral
the adaptnv Mate model and esimi atl ues for R (2.5 x 10- 1) ad Q jI.0 x 10 ") *vm ried in the fihitrti ft. lononurs
fromt Mcic of nembet %ddatton sa ten nr masunm S,.A of 2000 and un--mld oon ots-n as go-en In Fig. 1. Filtering xss
done ws in (A). but %ith estimated ialtie for R (1.1 x 10-) and Q (1.0 x 10-I-) used for filterng.

TABLE I

Esimation of component cocnrtosin absenice of model error and drift

Method Prediction Calibration R Q PRESS
ne S/(nAV . mtodel

KF 39 Sp, 2.6XI10 00 0.0907
CLS 39 CS ~ 0 0 0.W0
KF 39 CIS 2.6 x10' , x10-1 0,822
CLS 39 S.R. 0 0 0.0
K F IS S R. 1.06X 10-' 00 0M524
CIS IS CLS 0 0 1.246
El' is CLS 1.06X10' l.OxlO'- 1.244
CLS 1s S.R. 0 0 0524

*PRtESS. The sum of squared ericor For the predicted spectrum as cotpared to the tine, noise-feee spetrm,4 summed oser all
calibrat inoponents for the 20 memirbers of the Prediction set The name Prediction set %as used, with different amounts of added
noise, in each ease, and each method wwa applied to each ne. no that diret comparison is possible.

**SR.. moidel from sequential regressiont of absorbance onto standard concentrations. using estimated measutrermnt error variance
of 2.6 X 10-

CLS: model front classical least squares regression of ealiheatton data uithont usetihting.



RSLS AND DISUSSION been dintinisbed substatitiall; by wse of the
sequential ressao and the agreement of the

Aset of calibration standards u-as prepared b cohumns of K estimated from sequential regression
simulation. The conipossent spectra vare as shown with the tuie spectra is cacelletL
in Figi1 After calibration bdbeen 2ccmap~is*,oi Table 1 shows results from a unic-independlal

prcdtonwasattmptd onsunlatdk~id~ion scalar Kalmian filter and CLS prediction applied
seas for uisicthe true %alues of component on- to a typical sets of validation damta. hu noise
ccntratnm noise: %unanee. and drift wecre, knousi- talen from a uniform distibution. In this study.

the spectral models were generated two ways:v one

£qEakmce Of Ketrne fill- Zed CIS Prdction, set wxas generated b) CLS calibrationz these con-
tainnd noise. as demonstrated in Fi., 2. The other

To demonstrate the essential equivalenoe of set was generated by sequential regression of
CLS prediction and sequential regression. the two calibration data; these modcls sseri %irtuaI4
nethods werie compared for a well-bdiaved set of noise-free. Both modes were used for Kalman

data. Fig. 2 shows plot of the aouns of matrix filtering a=d for CLS predicton. The, results from
K obtained from sequential regression of calibra- the time-indepenident Kalman filter were identical

tion spectra onto the standard coneentrations. and to those obtained from CLS prediction sshen the
as estimated from CIS calibration applied to the CLS calibration model %w used. Ho%%ever, if the

same trun,- set data The noise estimiate used in ialibration model noise was treated as a form of

the sequential regression was 1.0 x 10 - . close to slstem, dynamics noise, and a suitable value was
the true noise vanane contained in the caLibra- tilt for Q (see eq. (Al) in the Appendix) in the
tion data. Improvement in the estimation obtained Kalman filter, improved estimates resulted. In fact.
through wse of the sequential regression is ap- these estimaites, tracked estimates obtained front
parent. Overfllting of the calibration data has filtering with noise-free calibration models.

TABLE2

Estitnation of consponsent coiieutratioiis irt presence, of iinmodetted response

Mtihod Prediction Calibration R Q PRESS
Set SIX(A s model

CtS 39 CLS -364

cis 194t cis-- 3.86
CLS 1944 SR. 2 .67
At(F* 39 SR ;6x to- t~10

1 
to.100

AKF 1944 SR. 2.6xt10-) tOx10-1Z 013
AKF 39 CLS 16 xt t, Iox to-$ 2.21
AKF 1944t CLS 9sx to- I.Ox to- 037
PLS ~ 39 PLS 0 - 320
PIS 1944 PtS -- 2.17
PCR to 39 PCR 60 - 325
PCR 1944 PCR -- 226

* todified to reflect iinnodetted conmponent presec. PRESS was calcultated for the accuracy of predictin of all modeled
romponcintS.

.. AEF. Insnalions vantanco-hasod adaptive filtoneg. using innomations limit of 3n,Qs). and reset for cavaance upon restart of

**PLS: Partial toast squares prediction. to-ng the algorithm gisen in fGotadi and Kowalski (21.
PLS. Partial toast-squares catdbration. with the inodel definod by cress-alidation A fiso-faciur moele s used in these fits
SPCR: Principal components regression. using the algorithm given in Geladi and Koswatski (21

V' PCR. Pnincipal componenits caliborton. with the model defined by the first three rigenvecturs of the calibration data scatter
=stos.,



Cadibation model noie is explamid by, treating k'e considembl, better than all but those pro.
it as a form of dy-namic noise in the s =tiald duced by zaptnv filtering. The results can be
regression and increasing Q to a realiszc value explained by noting that PLS and PCR methods
prmvnts the overfittirg of the noisy ruodd to rely on a factor model for the multicomponent
data. In gcenraL Kalman filetcing of the predict- system. This factor model is produced during the
ion sets produced results th:t were suptrio; to calibration, and it is set up to remove most of the
those obtained from CLS prediction, unla.. CLS noise present in the calibration. The three PCR
prediction was carried out ,with noae-free cadibra- factors (or five PS factors) fit validation data
tion models, with or isithout noise equally wall: the dominant

error is model error from the uncalibrated compo-
Estinarion in Mte presence of unrnodelkd ctompo- nenL In this case. the model error is relatively
r.erts small and good estimates resulted from factor-

based calibration. Residuals from fitting of the
When an extra, non-calibrated component is validation data showed ovrfitting of components

added to the set of species producing the set of near the uncalibrated component, just as in the
calibration responses, the prediction error in- CIS fitting. houever.
creases. Fig. 2 shows the response of four compo-
nents, the calibration model included concentra- Sensittri:j of innovation rarnane adaptive filter to
tions and responses on the last three. since compo- nmse estimates
nent 4 was absent from the calibration. As indi-
cated in Table 2. the presence of this unantic- As would be expected from its derivation, the
ipated and uncalibrated response produces a sig- adaptive filter based on innovations ,ariance is
nifi-ant decrease in the accuracy of estimation of somenihat sensttise to values used for s)stem and
the suell-moddled components. Components I and measurement noise To obtain the results sum-
2. ulhose responses show significant overlap 'ith marized in the table above. values of I x 10 - and
the unmodelled response of component I. carry 2.6 x 10- uere used for Q and R. respectively.
the largest error in estimation. Component 3, with These values, obtained from the innovations corre-
a response that is somewhat separated from the lation adaptive filter as discussed above, %ey
unmodelled component, still carries some error in slightly overestimated the actual noise contribu-
estimation. Further. the error in estimation is pre- tions, %%hich were 0 and 2.5 x 10- 1 for system and
sent despite the calibration method employed, measurement noise variances. For state ,alues near
Even methods based on regression of data onto unit), the third term in eq. (26) will dominate at
factor-based calibration models are unable to the start, when the state covanances are large, but
compensate for the unmodelled component in the the first term will quickly become the dominant
prediction step. The innovations vanance-based term as state covariance decreases. With state
adaptive filter, on the other hand, successfully values near unity, the second term %ill, in general,
compensates for most of the effects of the unmod- always be small unless system noise is sizable, this
died component, and shows significantly less er- term probably could be neglected to decrease
ror in the estimated concentrations of components Lomputational overhead, if desired After ii e first
I and 2, and slightly less error, on a%erage, in the 20 points, and on subsequent filter passes with
estimation of component 3. better state estimates and decreased covariances,

The results observed for partial least squares estimates of measurement noise variance will
(PLS) and pnncipal components regression (PCR) dominate the lahulation of filter innovations van-
calibration were strikingly different than those ance, and will therefore set the region where
observed for fitting by other means. PRESS values acceptable innovations will be found Significant
obtained from fitting the cahbration model to the over- or underestimation of the measurement noise
validation data set were almost independent of the variance may be expected to significantly affect
noise contained in the validation data, and they the performance of the adaptive filter. To test the

a
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* Modiried PRESS. See Table 2 for dctails. Tt noise varian e for dta Vec R -26X 10- . and Q 10 x 10
-

'
Noise was generated froes treform dittinbution for this data set.
Nogs ws geneatred fton r dastdibuzion for this data set

sensitivity of the filtering to crrors in the estima- Table 3 presents the results of that study. Fig. 3
lion of the measurement and system noise van- shows the innovations after adaptation of the filter
ances. to data sets uere prepared for examina- model for t%%o noise levels. The unmodelled fourth
tion. one with noise taken from a uniform distn- component is visible, even when noise in the mea-
button, and one with noise taken from a normal surement approaches the size of the unmodelled
distnbution. Filtenng was done on these data, component (case A) When noise levels are small
using the same filter model, and the same initial (case B). good correction of the models for the
guesses. Only the guesses for the system and mea- unmodelled component is observed from the flat
surement noise was changed from run to run. innovations over the data set.

TABLE 4

Estimation of notse varance in data

%lode] type trot R Est R tolt Q Fst Q True R Tnie Q

N 10X10
- 

t 4 1 10
-  

0 11x;O
-
ll 40×X10

-  
0

N IOX o
-
, 41X10

-
' 0 13xtx0

-
1 40x10

-
' 0

N 10to
-
. 41 10

-  
0 13xl0"

1  
40 t"0" 0

N IOx t0-2 43510-
4  

0 1tolx 
-
,, 40x10'

-  
0

D 31xt0 
-  

41X10
-
' 0 1 txl0

-
t 40X10

- '  
0

D 10X10
- 6  

41 X10
-  

10Xl0
- 12  

44X10
-
' 40X10-

6  
40X10

-

N 10xt
1
06 4t0

-  
0XtO

-
, 5 1 Xto- 40X10

-  
40X 10-"

D IOX0
-  

4.1X t0
-  

10 34X10
-
' 40X10

- 6  
40X10

-
'

A 10x 10
- 6  

44X 10
- 6  

lOXl 0
-

1 4 4 X 10
- $  

40X 10
-  

40X 10-'

* N Complete model. with initial state guess of 0 and .ovartance gues of I No drift was present D Incomplete model with
random drift betwuen measured apectra Initial guesses of state and iovanane were as in case N above A Incomplete model, with
random dnft and unmodelled components present The initial state guess was ithn 10 ,, of true state value, and .ovariante guess of

KI
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Estimation of noixe rvanrane parameters the noise estimacs were taken as 1. Table 4 sum-
marizes Lh- re-alts from this study. In general,

To test ths accuracy of estima:ion of noise better estimation of noise vanance was seen %hen
%anancs by the innovations correlation adaptive initial guesses of noise .ariance wer lower than
filter, this filter was applied to several spectra with the true values. These oserly oputeiswic guesses
different noise structures. As above, noise from conerged quicki) to accurate noise estimates.
uniform and normal distributions waus used. and When noise estimates were tried that oc;csti-
the adaptise filter , n applied to the data. For mated the noise contributions, convergence nas
this study, a comp te spectral model was used. s!ower. and the fitual estimates wcre not as accu-
and no adaptation ., noise means was necessary. rate. Fo; this systcm. estimates of the measure-
Initial guesses for the noise variances Acre typi- ment variance R were found to be more accurate
cally near zero. and guesses for the covariance of than those for the systems noise Q. but both

A
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0 8.41.

OffsetSape 1 26 2

Fig 4 A S muaatcd daitr sh'assng Inrur drift in responise arid offset for Dnft3 data set B6 Estimated conoenramuons for data
shwmg hinar drift frtm CLS regression with offsei term C. Estimatted touteentratlon for data shorting lineatr drift from Kialman
filter .tti dnifl esel

.ABLE 5

Estimation of ccr nporent concentrations from muotcomponent data corrupted by linrear dnift

%fetthod Data set Predtct.on Caibrato. Ret error ()PRESS
set S/N (man) modiel FComp I Consp 2 Cornp 3

CLS DcfIi 39 ULS 11 86 020 -162 28 /7
KF Dnfti i9 S R .. 283 028 -i Ot 2865
CLS itnfti 39 S P . 006 200 -033 2983
KF Dtf2 39 2:i . 07 -003 -2t4 0)09
CLS Dnf:2 39 S R i "1 -009 -212 025
KF Dnfu3 39 S R 086 073 -407 037
CI'S DnO3 39 S1R 267 -006 -194 00
KIP Drtft3 39 S R .. 096 057 -063 028

Data sets bid linwia dnft is all parameters, indcludng the inumental iesponse fonsotons [fo each coosponent And in tbc otlsc
term DrftIi noise eanirsees were 12 x 10 'for dift in all instrumental respoose parameters, and 1 0 Ax0- is the offset term
Drift, nise s.aiies were 1 Ox 10d in all instrumental response pa'ameters and oftset terms, in whichi the esceptbon of the
respoin fonce o roepoacut 1, wich had a drifi vanasco of I On tOW Dnfi3 's.d no-s warlances fot alt instrunsental response
%attables of Al0x 10' and drift in the offset tern) with vaniance 1,0 x t0O All data sets had addd useasuentent noise w ith a
esvnance of 2 5 x 10-

itegrestion etidof augmented to include an offset teem
nnFiltci model augmented to include an offset term and drift paiamoto.s in iospnsos And offso Dupliwcateoasurrents made at

each point.
Foot replicates uere used in the measurement 4,ep foe this run1
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estimated values were close enough Co the true C3 b d, d2, d3 dbj. %~here b is the offset term in the
tnoise variances to be useful in filtering data, filter measuremnrt mode., and d, describes drift

PRESS values m~ere generally lower for data Aith in state r. Derfqitios of the state in this way meant
normally-distributed noise than for data ith uni- that eight parameters Acerc fitted to the multicom-
form noise, as might be expected from the deriva- ponenit data. Duplicate data %Nee used to fit Co
tion of the adaptive filter, ensure filter obsetvability, as discussed above.

Data wnith linear drift in response and offset Aere
Correction ofift in ntuilsconmponent prediction generated to test this filter. A typical data set is

shown in Fig. 4A.
Correction for linear drift was briely studied Results from this study are summarized in Ta-

for multicoraponent prediction. For the three ble 5. Filtering resttlts are not significantly better
component chemical system used in these studies, than those obtained from CLS regresston with an
the state vector used for filtering was X - [CI C2 offset term in the calibratton model, but filtenn3

Response

B
CLS Regression

Coop. I

Coop. 2

Coop. 3

0.L
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Fig 5A Siuated data showiang proportional drift in response and offset for Drilt4 data set B Estimated conientrations for data
showing proportional drift from CLS regressit switht offset term C Estimated concentrations for data showing proportional drift
from extended Kalmian filter with dift modet

typically produced lower PRESS values than CLS It is clear from the figure that, when properly
regression. Fig. 413 and C clarify the advantage modelled, linear drift can be effectively remosed
gatned by the use of the much more complex filler fronm multicomponent systems Part of the failure
model over the simpler CLS model. significantly to achieve better drift correction with the filter lies
reduced fluctuations in the estimation of con- to the weak observability of the filter drtft model
centraiioos from a drift-corrupted prediction set. With single measurements made on a drifting sys-

TABLE 6

Estimation of component concentrations from mnltinrotponent data corrnpted by propottional dolft

Method Data set Prediction -ahhbration Ret, error ()PRESS
set S/N (max ) model Com.P Comp. 2 Comp 3

EKF
5  

Dnli4 39 SR. 31t5 -107 -300 009
Ct.S Dolt4 39 S R. 140 133 1057 1835
CLS Drit 39 S R 145 131 978 1839
EKF Dit4 39 S R s 380 -034 -310 009
EKF Drilts 39 SRO ~ 1.39 031 05t 020
CLS DnltS 39 S R. 379 2 76 3.19 t.16
EKF DoltS 39 S R. t 1,2 003 024 019

*Data sets had proportional drifi in the response parameiers for a11 wnponenits altong with random drift in the offset Dnlt4 had
propottional dolft el 0990. and random dolft vaunore of 10 is t0 DofiS had proportional drift of t10016. aind random dolft of
LOX t0-. Both sshad Aiteasotemets nmAse oath vananee; 2.5XI10'

**Estended Kalman filter, oath filter models as defined hy eqls. t14) and (15). Filter state insladod iponeni onsentritioss and
proportionat dolft parameter.

-Using crrect concentrations as the initial Suess oath gnessed proportional dolft ol I
U-Tg augmented regression medt-. oath oflfset term.

Susing nero an initial guess of component concentrations, and guessed proportional dolft of 1.
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tern, the filter drift model is not observable, and man filtering. This approach to CLS calibration

estimates of component concentrations fluctuate and prediction provides for improved calibration
wildly Use of duplicate measurements insures that models and improved prediction accuracy in noisy
the filter model is observable. It is only weakly data. Another benefit s the abihty to reject un-
observable, however, and the estimated compo- modelled component responses in the prediction
nent concentrations are not as stable as in other of analyte concentrations in unknown mixtures.
filtering applications reported here- Collecting The correction of drift in the response of the
even more replcates improves filter results, since chemical system during the prediction step is also
this has the effect of making the filter model more possible, provided that a suitable model for the
observable. Ile size of the drift also has an effect drift process can be generated. All these correc-
on the precision of the concentration estimates. As tions represent relatively simple additions to the
drift magnitude increases, Q also must increase, calibration model The classical least squares
and as indicated in eq (AS), the covariance in the calibration model is especially convenient because
final filter states must also increase Thus, even the Kalman filter has been derived for use with a
though linear drift can be corrected and its effects causal measurement model Given the general def-
removed with sufficient replicates, the precision of inition of the filter state, and the possibility of
the predictions is degraded. extending sequential regression to the inverse

The correction of proportional drift by use of model, however, there is no difficulty in extending
an extended Kalman filter was also investigated, the time-senes concepts of Kalman filtering to
The same spectral models and calibration was other calibration models, at least on an ad hoc
used as in the other studies reported above, and basis
proportional drift was introduced into the set of All filtering routines presented here are rela-
spectral data to be used for prediction. A typical tiv.ly fast. These could be realized in a suitable
data set is shown in Fig. SA. The extended Kal- real-time language, if desired, for on-line use.
man filter was applied to data with proportional
drift, using the filter model described in eqs. (15)
and (17) above. Linearization of the system dy- ACKNOWLEDGEMENT
namics was done as in eq. (18). As before, esti-
mates of noise variance w~ere obtained from the This work was supported by grant DE-FG02-

innovations correlation adaptive filter. Table 6 86ER13542 from the Division of Chemical Scien-

shows results of fitting data with proportional ces. Office of Basic Energy Sciences. U S Depart-

drift. ment of Energy.

Correction of proportional drift is better than
correction of linear drift, but unlike the results APPENDIX
obtained from the linear drift study, the initial
guess for the states used in filtering is important in Scalar Kalnaa algorihin
convergence of drift estimates. Even with poor
initial guesses, though, very good compensation of Propagati n of filter states in time
drift occurs as is apparent from the error in the X(k) - F(k)X(k - 1) (Al)
estimated results and the PRESS values. As with
linear drift, correction of proportional drift results Propagation of state covariance in time

in degraded precision in the estimated component P(k Ik - 1) - F(K)P(k - IIk - 1)FT(k)
concentrations. + Q(k) (A2)

Kalman gain
CONCLUSIONS K(k) - P(kJk - l)ll(k)(llr(k)P(k 1k - 1)

This work has demonstrated the ease with 0ihich
a CLS calibration may be accomplished by Kal- Xll(k) + R(k)]J (A3)
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Abstract

Bates D M and Watts DG. 1991 Model building in x-tettosty using profile t and teate plots Chernonetrts and Intellgent
Laofrator Ssteess. 10 107-116

The am of model building is to d.termine the torrest model. whith means that the equation dessribing the phenomenon under
study iludes all ihe importian fattie ian the i.orretA form, and ex.ludes unimportant fatots Piatitally of wourse, we tan unlN Use
the data at hand to hit a model Aluh in 'adequate' In linear and nonhnear regression, a model lch ts tnadequate bet.ause an
importantatter is ao n.luded, i be us a fai.tot is torpora:ed in a %rong ftrm, tn often be deteted by examining ulots of the
residuals And in lincar regression, models whith inude too many fatiots or too many parametcer an often be dete.ted by
examning the parame er xorrelation matrix, or the parameter estimates and their standard etro, Fo tihlinea models. hoioesei,
u.h linear approximation sumiaries ate not reliable To atd in the deseopment of nonlineat model., we tecommend using prof le

likelihood plots The plots are simple to generate and appea to be espotally useful tn deet"tng models uhith tould be cimpltfied by
renmoing fattors or by equating parameters It this paper -e a. data sets from he al engineering to tlustta'e the ,alue of profile
t and profile trace plots in model building

INTRODUCTION ",liere Y, is a random variable corresponding to
the observation for the nth case, and Z, ls a

Ltnear regression random variable corresponding to the 'noise' in.
fecting that case. The noise for each case is as-

Consider a set of data consisting of values of a sumed to be normally distributed with mean 0 and
set of factors. X,, t - 1, 2..... N, p - 1, 2. P variance o. and independent from case to case
and Ihe corresponding values of a response. );,. The model for all N cases can be written in matrix
which are well described by a model of the form form as

Y. [flx.t+32x.2+... +Ax. +Z. (1) Y=XP+Z (2)

0169.7439/91/$03.50 0 1991 - Elsmesir Scence Publishers B V



U here Yi is the X x I vector of random variable, TAKLE I
representing the respsonses. X is the X x P denyv- ~ax~ ~ .

tive matrix. p is the P x I voctor of unknown

parameter values., and Z is the %vacor of random
variables representing the noise. The quantity Xpl O 0
is called the expected value of Y and the model is 02 "l
termed linear because the derivati%,e of the int- OQ. C31
peeled value with respect to any parameter does Of& -11
not depend on an,% of the parameters; IIIi

For a linear model of the form (2) with nor- 1b't
mally distributed noise. classical statistical analy-
sis (see, for example ref. 2) establishes that the
'heat' estimate of P. given data y. can be formally 31ffa
written as

,*TvYT..(3) Gross and floz 131 obtaied data on the relative
A - (rx) A , (3) reaction rate of the addition of cm to aseries of

u here ft = (Op fl-p,)Y, is the least squares I.I-diai~I-2-nitroethylcncs for Ahi-h the linear
estimate. Furthermore the associated estimator can model
be shown to have the properties that it is normaly * -

distributed with expected vasiue P and variance- .Z

covariance matrix (XTX) 'a2. The pth parameter is appropriate. In eq. (81. Y. relaitc to the natural
thus has estimated standard error logarithm of the relatise rate constant. liflk, j

__________and x to the substituent constant. q, The data are
SC~i, = j ((XX)(4) listed in Table 1. The rou% 0. 0 corresponds to

' P 'It)hsdrogen.

%%here s2 S(A)/(, N - P) is the sariance estimate For these data, the least squares estirmtes are
given by the minimum sum of squares divided by P ( -0.031. 4.13)r with parameter standard en-
its 'degrees of freedom'. N - P. A I - a confi- rors 0.036.0.19 respectively. The variance estimate
dence intersal for that parameter is gvecn by is s2 0.00474 with five degrees of freedom, and

(5) ue have

X =7.00000 0 -1800
where (0.91800 0.2525-1

(6) (X (-0.9254 7 )5S3
se~i~)Joint confidence regions are ellipses, as shown in

is the studentized parameter and t(NV- P; a/2) is Fig. 1.
the value which isolates an area a/2 under the
right tail of the Student's t distribution with A' - P Noinear regression
degrees of freedom. A (I - a) joint parameter
inference region for the parameters is given by Now consider a model of the form

TXXp <PsF V- P; a) 1'. =f(e. x.) +Z. (9)
(7) %%here f is a nonlinear expectation function. x., is

a seetor of regressor variables for the nth ease.
where F(P. N - P, a) is the value wshich isolates and e = (01,._._ 8 )r is a P xl I ector of un-
an area a under the right tail of Fisher's F disiri- knowvn parameters. (%Ve use 0 to cmphas-ze the
button with P and N - P degrees of freedom difference from linear models. As before, the dis-



The fi:rar aiznatica suandard efr
th tprxtdeI 4,. j axoLith eq. 4" '.

rfieace intel%-41l i =2onaio, *ith eq. fr3).
-SCN,- P;a7 (11)

%berc the stadcatizd pxarameter is defined by

-6-z a'02 Z 6 a,~ (:

M1 ) F~mally. a bic. approinatioO 41 -- a) joint

FPI- ." 0.SD .9." a 99S V~& SVr 0vs 6 ta pwAamerer inference regiont for the parameters is
Pw2G 01 T_ &V hc C%. - Meid d= Ab taken to be

,,a c C& a Y=== u= t~ Afr' bxb u tIb
CMV =ee 1~ve8 6C PsCF(P. NXC* -; gP: a)MM (13)

Unfortunateiy. linear 3pprosimaition inference
re~ons. arc not trustaorth% Ill

NrOWi , plots

turbancs Z. are assumed to be normal (0. o ,)
and indepeeknt. A model f(G. x.) is nonlinear if Because the sampling iheor) approach is not
at least one derivative of the expectation finctio adequate for nonlinear regress:ion. it is necssi
with respect to at least one of the parame.ters to use a more, general approach based on the
involves at least oe of the parameters 1l].) For likelihood function. Fortunately. for noise uhich
example, the Mijchaclus-Menren model for enzyme is independ-dt) normally distributed %vith con-
kinetics. f= O1x/(B. x) is deemed nonlinear be- stant variance, the likelihood function depends

cuethe derivative 3fla, -x/(k . x) insolves primarily on the sum of squares fncion

k_ niethe linear model. eqn. (1). there are no SO6) = ( Y -(eTIM) ( 0d)) (14)

analytic results for the estimates and their distn- and so draaving inferences about the parameters
buttons. Indeed, there is not ev-en an explicit solu- reduces to summarizing the sum of squares func-
tion for the least squares estimates-. to find the tion efficiently and meaningfully.
least squares estimates, we must resort to search For linear models of the form of eq. (2). -he
or iterative techniques. Properties of the estimates sum of squares function is quadratic in f0 and so
are usually assumed to be well represented b5  contours of constant likelihood, % hich correspond
linear approximations evaluated at the least to contours of constant relatie plausibility of
squares esimatecs 0. for example, the linear ap- parameter values. are concentric ellipsoids. For
proximation varice-covariance matnx is tak-n example, the elliptical confidence regions in Fig. I
to he (VTV)- Is2. %%here 52 = S(6)/(N% _ p) is the arc also sumn of squares contours. To summarize
variance estimate. V -. g is the derivative the likelihood function for a linear model then. 'se
matrix evaluated at B.and il(G) = (f(0, x)...., only need to specify t.he (common) center of the
Ae x)' is the vector of function values esaluated ellipsoids (ft). and their size arid orientation. This

at the design points. can be done mathematically for any number of



sarar eq. ()bu -saiii bjntrgoin parameter function. The profile i function is sies-more than t=dimenSions is %Vdf=L 1rto the 'I statistic uzed by Bliss and James 14J.For nonfinra mnodels. the stin of sauares The profile sr function is 'aluable because plots

comecs one Of intesretin rViuliint cm profile parameter provide useful information onplicated surface in inul~ple dimensioms To do the nonlincarnty of an estimation situation. This isthis, we focus on the characteristics of the aunt of because. for a linear model a plot of -(,0,) versussquares function ui= vicsol in one or two dlt- studcrntized profile parameter S(#3,) is amentions. straight line through the origin with unit slop_.A useful view in one dimensiz - is givent by its Departures of the profile plot of r(9 ) versust~ao'in that dimension: the profile sum or $(a ) from the 45 degee line reveal nonlinearitysquares furacticn. For a model of the form r-) or in the parameter, and determining where 7(9,)(9, the profile sum of squares; function for the pth intersects the horizontal line at height t t(A -varx-ineter can be written P. a/2) determines an accurate nominal (I - a)

§(0, ) -min SI(6,. Or,)") -=S((e,. 6Tf)7) likelihood inteival for9,

05S) Profile traces

'Mhc the trace vector Additional important information can be cb-~ ,r tamed front pairwise plots of the components ofio Ce (I .. (16) the trace %ector %ersus the profile parameter- That
is the least squares estimate of 8 _P conditional on vs es ra lt f ~9)~rss ,adO(the profile paramecter 8,. The notation (9,.d 8)moe.aptofhere
denotes the vector with elementsFoaliermd.apotf htacfl#,

'ersus 13, %vill be a straight line through the -,rigin(I. ~ ,. %vith slope given by the correlation betAeen the
parameters (derived from the appropri~.te elementFor a linear model, the profile sum of squares of The matrix (XTX)'). Furthermorc, the tracesfunction is a paraboiLs and can be wrTitten in terms wvill intersect the parameter joint confidence el-of the studentized parameter as lipses at points of horizontal or %crlical tangency

of the ellipses. (See Fig. I or a plot of the profilep S( ) _ -S(p,)2 (17) traces for the CN -Michael additio i data.)
For a nonlinear model. the trace. w 11 be cursed.By rearranging thit equation, we can %write but will still interset the parainete: joint likeli-

hood regions at points of vertical and horizontal8(1, -~gn- 1% ,) 5( -s ( A J tangency. This information, together with infor-
mation from the profile tplots, can be used to(1) obtain accurate sketches of the joint regions. as
described in ref. 1, Appendix 6. The traces andlineare moel the profile i function. isa ientica sketches reveal useful informtation about the inter-lieual tod the tu fie paae function dnial dependence of the parameter estimates caused byequa tothestuentzedparmetr fncton. the form of the model for the expectation futnctionFor a nonlinear model, the profile ifunction it and by the experimental design used in the investi-defined as _______gatton. Such information can provide valuable iii-
sights for inference, for model building, and for(o-'igr(, -~ fi, S6 design, as demonstrated in the next section.
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CODIMER IYDROGC ATION where R - 1.986 is the gas law constant, a is the
effective entropy change, and P is the negative

Tschernitz et al. [5] obtained and analyzed data effective enthalpy change under the assumption
on the vapor phase h)drogenation ofr mxed isoor that the catalyst activity remains unaltered with
tales over a solid supported nickel catalyst in a change in temperature.
study to determine the most plausible mechanisnm The linear summary statistics for model d, using
for a reaction. The data consisted of the average the data at all temperatures and the Arrhenius
reaction temperature T (Kelvin). the average par- form for the %elocity and equilibrium constants.
tial pressures of h)drogen (x). of codimer (x.). are showvin in Table 2. To improve the behavior of
and of h)drogenated codimer (x,). (atmospheres), the estimates, we scaled and centered the data
and the reaction rate (lb/(h) (lb catalyst)). using x0 = 1000(l/T- 1/548), and. to avoid con-

Eighteen mechanisms nere postulated for the fusion, define , = ai + A3o/549 and -f, = #,/lO00.

reaction, and the most plausible one is found to be Inspection of the parameter estimates and their
that in which the reaction between molecularly standard errors in Table 2 suggests that 0, and y,
adsorbed h)drogen and adsorbed codimer is con- could be zero, that 4, and 02 could be equal, and
trolled b. the surface reaction, so the reaction rate that j and -. could be equal. Hoser, we must
is be careful about incorporating model reductions

which involve the ts since they depend on the
OAAOx.x (19) arbitrary centering temperature To and the associ-

(1 .O.x + O ~x: +04x; )  atd y.
To demonstrate the kinds of information which

(ref. 5. model d). The parameters 0.. 0.. and 04 is available from profiling, we present selected
repre-ent adsorption equilibrium constants and 0, profile trace plots in Fig. 2 and discuss vanous
is the product of the adsorption %elocity constant aspects of the plots. Superimposed on the trace
of hydrogen and codimer molecules xsL. where plots are sketches (dashed and solid closed curves)
sL represents the 'activity' of the catalyst. The of thejoint likelihood regions. The horizontal and
parameter 0, also has the interpretation of the ,erttcal tangents of contours which are incom-
proportion of the surface area of the catalyst pletely determined are shown by short bars on the
which is cosered by the reactants, traces. Also shown is the straight line (solid or

It is assumed that each of the constants can be dashed) corresponding to equal values of the
expressed as a function of temperature by means parameters with the x indicating the point at
of an Arrhenmus relation, which both parameters equal zero

From Fig. 2a it can be seen that 0, could be
O, -xp(a,/R + fl,/RT) zero, since the point corresponding to 0, = 0 lies

TABLE 2

Paramtcer smmary for codimer h)drogenaiion data. model d

Param. Est sM Corretaton

Oi 02 03 '04 Yi YZ 7
-016 035
-278 037 -095

03 -10 031 -088 08
.4 -297 087 -019 030 048

Y, -266 1.79 -041 035 038 OtO
Y2 6.38 184 0.19 -014 -!09 006 -091
Yi S41 122 014 002 -009 015 -072 073
Y4 1775 245 -003 -003 -018 -083 ot -OlO -002
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%ell %%itlun the vertical 'shadow' of the joint likeli- Similarly, from Fig. 2e. y1 = 0 is eminently plausi-
hood region and has a studentized value near zero. ble, as is y1 = 0,. The latter is meaningless, how-
Hoinever. 2= 0 is not plausible, nor is ,. 0=,. ever, since the tmo parameters are of different

-6 -2 0 2 4 6 8 -6 -2 0 2: 4 6 8

,+\!~ s .4 --
Si "/

+>(d 0723 ')

IQ Ni

-6 -2a0246 -6 -2 0 2 4 6

Fig 2 Selected profile trame for codimer hydrogenation. model d (a) 02 vs 01, (b) 03 vs. h, (c) ),,vs 0.3, (d) "y3 vs ¥ (e) Y't es ,
toy so4, The solid and dashed .osd -.r'es denote thc 60. 8O, 90, 95. and 99% joint likelihood boundaries The wohd or dashed
straight hn- is the line of equality of t", parameters, and the x indn-tes the point ,wiresponding to 0v, 0, = 0. 0 Short ertl-l and
honrital bars on the trames show the boundaries of contours which are not completely determined
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types. Companng Fig. 2b and d. it can be sen 1ABLE4
that 03 = 02 is not plausible, but that y3 = y2 is Parameter snmmary for edited rodmer hydrogerato data.
highly plausible, model d nith 0, - 0. y, -0. and Y,'Yr

The high parameter correlations between the Pa. Em.., 99% Correlation
parameters manifest themselves as long ridges in rar- mate laethhood
the 8-dimensional inference region, as illustrated cee toner upOr 0. 72
in Figs 2a and f. where only the 60% contour is -303 009 -328 -277
complete. High parameter correlations often indi- 0. -113 013 -148 -070 -012
cate overparamemnzation, but it appears that over- 4 -314 079 -690 -124 038 067parametnzation can also manifest as large joint Yr 363 049 225 512 028 054 038
likelihood regions, especially unclosed ones, as Y4 1751 232 1196 2839 -020 -045 -087 007
shown in Fig. 2e, where there is negligible correla-
tion, but the Joint region is very large. This indi-
cates a subspace in which the sum of squares
surface is very flat, which could be due to over- profile trace plots (selected examples of which areparametrization shown in Fig 3) still show considerable nonlinear-Because the Ors depend on the arbitrary center- ity in the model-data set-parametrization combi-
lug temperature To. we first considered model nation. Parameters 04 and y4 are the worst af-reductions involving only the ys We refitted the fected, both individually and jointly, as shown by
model, first holding -1 at zero. and still found that the strongly curved profile t plots The asymptotic
01 = 0 was plausible, as was y. = y2 Setting y3 = y2  behavior in the profile I plots causes the joint
and Yr = 0 gave the results shown in Table 3. likelihood regions to be open at levels above 90%The residual sum of squares went from 2 2456 Although tire line 0,r = 04 passes through the centerX 10 with 32 degrees of freedom to 2 3543 x of the joint likelihood region. Fig 3a, it makes no10

' 
with 34 degrees of freedom, so there is not a sense to equate these parameters because theystatistically significant extra sum of squares At depend on the centering temperature and the yrthis point we noted that two response values gave parameters We conclude, therefore, that the sini-

rise to large studentized residuals and so thee plest form of model d has been obtainedrow.s ,ere deleted and the model refitted. The It is useful to note that of the ten trace pair
rain effect of this was to reduce the residual sum plots only three (0) vs 0,, -12 vs >,, and y2 vs 0,)of squares by about 30% and to reduce the param- gave closed contours at the 95 and 99% levelseter standard errors by about 15%. Since the model has been pared to a sensible

Because r = 0, it is legitimate to follow through minimum number of parameters, this suggest that
and set e = 0 as well The results from this model, mupovement in tire behavior of the likelihood
using the edited data, are shown in Table 4 Tbe surface could only be achieved by incorporating

more data. Fromn the remaining seven trace plots,
TABLE 3 and front the profile t plots, fig 3e and f, it is

clear that the open contours are due to lack ofParameter summary for codrmer hydrogenation data. model d information on 94 anti Y4. (In Fig 3e the profile t.toh Yr - 0 and ),, - y, approaches an asymptote as 94 reduces, and in
Para.- Est.- re Correlauon Fig 3f, the profile t approaches an asymptote as
eter mate, re 

0  0  
04 Y2 Y increases. In Figs 3a, b and c, the contours are

0, -027 032 open because of P4, and in Figs 3b and d, because0, -271 036 -096 of y4. The parameters 02, o,. and Y2 are all well0
. -096 029 -086 082 behaved in these plots and in the other trace pair04 -289 085 -019 030 01t plots.) A future design should therefore be con-72 377 062 -036 043 057 042 st'uced
y, 1778 240 000 -007 -022 -085 od so as to provide more inforaton on 9

and -y4 both individually andjointly, possibly using
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-n -2 o, Sa-l 6 -2o2

W -- -

-6 -20 2 4 6 8 -6 -2 0 2 4 6 e

(a)(b

-6 -2 0 2 4 6 -6 0 2 4 68

to (f) 501(4)

Fig 3 Selected profile A and trace plots for w.dimer h .drogenation, edited data. model Al v-th 0.1 - 0. yn 0. and 1,- : (a) 0, Is
. (b) 0. '.s ,,, (ci -h vs o., (d),,s 0, (c) profile A foi 0.4. (f) profile A for y4 In (a) -(d). the sold and dashed closed cur..s denote

the 60. 80, and Mq joint hUehihood boundaries and the s.hort bits on the Arame indicate honrital and w~rtLcal tangents of the 95;
and %% contours %~h," ire Artompletely determined The dashed strwght line is the line of equality of tv~o parameters. and the x.
vhcn present, indicates the pixnt o..rmesponding to 0,. 0, 

= 
0. 0 In (e) and 41). (he soid line is the profile A function and the dashed

fine is the bnnear reference Dotted lines show nomminl 60, 80.,90.,95. and 99%o ikelthod intcrv.ls The x As 4he point corresponding

to C
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subset designs as proposed by Box [61 and Hill approximation regions and summaries for the ji
and Hunter 171. parameters, are extremely accurate.

This illustrates a situation where linear ap.
pro.dmation inferences for one set of parameters
for a nonlinear regression model are much more

DISCUSSION accurate than for another set of parameters. How-
ever, the ease with which profile t and profile

The profile plot approach to summarizing the trace plots can be produced renders reparametrt-
inferential results of a statistical analysis has much zation considerably less important, since accurate
to recommend it. The computations for the profile marginal and joint likelihood regions can be ob-
i and profile trace plots are very efficient because tained directly for the original parameters, which
we start from excellent estimates based on the are usually more meaningful to the researcher.
previous calculation, and because the problem is For univariate reparametrizatton, say . =
of reduced dimension (P - 1) Also, at each value g(Op), the profile t plot and associated profile
of the profile parameter we simultaneously gener- traces for 0, can be obtained directly from the
ate the profile t value and the converged values of profile t plot and associated profile traces for 0;
the trace vector, which provides the data to make there is no need to reparametrize the model func-
the profile pair plots. And for all the calculations, tlion or do any rerstimation. This, of course, is a
only minor modifications to standard software are consequence of invariance of the likelihood fune-
necessary. tion

Profile plots provide important detailed Infor- Profihing provides extremely valuable informa-
ination about the estimation situation. In addition tion for experimental design, as demonstrated in
to providing accurate marginal likelihood regions the codimer hydrogenation example. There it was
for each parameter, the profile t plots reveal how clearly evident from the profile I and trace plots
nonlinear each parameter is Siularly, the profile that further data was required to provide better
trace plots and the associated likelihood contour information about 0. and y4. No such indication
sketches provide useful information on the pair- was evident from the linear summary statistics.
wise behavior of the parameters. Superimposing Finally, profiling can be applied to very general
the line of equality on the trace plots is a simple situations, including multiresponse estimation, as
but extremely effective aid to model building. we have shown, and both univariate and multi-
Perhaps more importantly, liosever, the plots col. variate tine series analysis The univariate situa-
lective provide insights into the experimental ton has been discussed by Lam and Watts 1101.
situation, so that steps can be taken to obtain One can also use profiling to determine likelihood
more informative data (8]. intervals for fitted values of the model function.

Ralkowsky (91 has suggested rewriting rational by reparametrizing the model so that a new
model functions, such as in the codimer model, by parameter, say Of, :s equal to the fitted value at a
factonng the numerator parameters into the de- specified design point
nominator term. For eNimple model d would be-
come
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Abstract

ben-Avraham, D. 1991 Diffusion in disordered media Chemometrtcs and Intelligent Laboratory Ssteno. 10 117-122

Dlffusion in dasoidered media is anomalous in that it does not follow the regulat Filtkan law of diffuston in homogeneous systems
This has amp..itana mnphsaanu fat thn physm, of tiansport, phonomena an disordered media iratalh and iahng theory hate been
parirsularly lluminating in this area of re.earh An elementary expoutaon of anomalous diffUn an disordered media and at,

physical consequences. baed on the concept of fractals, are presented

INTRODUCTION with d. > 2 This slowing down of the transport is
caused by the delay of the diffusing particles in

Diffusion is among the most common phenom- the danghrig ends. bottlenecks and backbends ex-
ena in nature. One would find it relatively easy to isting in the disordered structure.
provide with several examples of systems where The concepts of fractals and fractal dinten-
diffusion plays a decisive role, in most areas of sionality have helped us understand better than
sktentif . research. In homogeneous, ordered media ever before the ph)sues of disordered systems such
diffusion obeys Fick's law. as porous earth, powders, amorphous materials.
(R

2)  (1) and aggregates. In this brief overview. we explain
these concepts and how fractals are used to model

i.e.. the mean square displacement of a diffusing disordered systems. We theta show how diffusion
partile increases proportionally to thi. time. This is anomalous in disordered media and point at
basi, result is universal in that it applies whether some of the physical consequences of this re-
diffusion takes place in one. two, or any dimen- markable irregularity.
sion of regular Euclidean space Ill. We have be-
come so much accustomed with this universality
that the realization that Fick's law is violated for FRATALS AND DIORDERED MEDIA
diffusion in disordered media came as a big
surprise. In nonhomogeneous, disordered systems We begin with the definitions of the most basic

the diffusion law becomes anomalous [2.31. properties of fractals 141. Fractals are niathemati-
cal objects with a llausdorff-Bescovtch dimen.

(R
z
) at1" (2) sion that is not an integer. They are most easily

0169.7439/91/03M0 r 1991 - FPseacr Scienc Pubhishers B V
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constructed in a recursive way. Thus, for example, smaller copies of themselves to their right and left,
the Koch curve (Fig. 1) is constructed by starting etc.
with a unit segment. The middle third section of In recent years, it has become clear that many
this segment is erased and replaced by two other disordered systems are best characterized by a
segments of equal length 1/3. Next, the same symmetry of invariance under dilatation [5). This
procedure is repeated for each of the four result- fundamental symmetry is essentially the same as
ing segments (of length 1/3). This process is the self-sinnlarity of fractals, only that disordered
iterated ad infinitum. The limiting curve is of systems occurring in nature exhibit this self-smi-
infinite length yet it is confined to a finite region larity only in a statistical sense. For these objects a
of the plane. The best way to characterize it is by fractal dimension di is still easily defined ty the
using its Hausdorff-Besicovitch or fractal dimen- scaling of their mass M with their linear size L
sion, dt. In a Koch curve magnified by a factor of
three there fit exactly four of the original curves. M oc L

a'  
(3)

Therefore its fractal dimension is given by 38 
i 4,

or d, - In 4/In 3 = 1.262. The fractal dimension is The Koch curve can serve as a model for a
a generalization of the integer dimensions that we linear polymer chain. Likewise, the Sierpinski
associate with regular objects of classical Euclidean sponge of Fig. 2 is an obvious model for porous
geometry, media. It is constructed by subdividing a cube into

An important property of fractals which ren- 3 x 3 X 3 = 27 smaller cubes, and eliminating the
ders them particularly useful for the modelling of central small cube and its six nearest neighbors.
disordered media is their self-similanty. This can Each of the remaining 20 cubes is processed in the
be seen by examining the Koch curve or the Koch same way and the whole procedure is iterated
snowflake, as it is frequently called. One can see a indefinitely. Notice that the volume of the sponge
central object reminiscent of a snowman. To the is zero, while its surface area is infinite. This
right and to the left of this central snowman, there agrees intuitively with the fact that its fractal
are two other snowmen, each being an exact re- dimension d, = In 20/In 3 = 2.727 lies in between
production only smaller by a factor of 1/3. Each d - 2 and d = 3 Fractals have been used to model
of the smaller snowmen has in turn two still an immense variety of disordered systems. Nature

I%

(a) (b)

Fig. i. Koch niev. ta) ieihe acraiic proccss by ,hith it ra onstucacd, (b) we-+mtanty - theniai .noomta n , a 'rrwonderd by
to0 exact copies of itilf.
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F~g 2 The Sneipnski spon$e

abounds with examples of self-similar objects. This distributed symmetrically and the correlations (u

has been made clear by several excellent books .u/ are not zero. This may lead to anomalous

published in recent years whieh helped popularize diffusion.
fractals.Interestingly, a random walk itself is a statisti-

fractlscally self-similar object. To see this, consider the

random walk as it looks when one regards n

ANOMALOUS DtFFUSION consecutive steps as one single 'superstep'. Each
of the supersteps is a random jump r on the

It is convenient to refer to a simple random lattice. The random supersteps are distributed

walk as a model for diffusion Ill. In a simple according to sonic probability P,(r) with a finite

discrete random wa~lk the walker advances one ionient (r
2

) - ,i. In the limit ni :* 1. P,(r) tends

step in a unit time. Each step is taken with equal to a Gaussian distribution. This is a simple result

probabilities to any of the nearest neighbors of the of the central limit theorem. It is evident that

present site. Denote tihe steps of such a walker by statistically the same random walk results for dif-

u1.u.. u- u. Then, the mean square displacement ferent values of ni. The only difference between

at time t, (Ri(t)). is given by walks with ni - nt and cm - ni2 is that in the first
case a step is performed every na time units amd

(R (t) - = + 2 (u. up (4) length of a step is ni/' and n / respectively, for

>1 the different walks. This means that if we scale

For regular lattices the correlations (u1 u;) are all time 5s -... r and length as r -e )et/r then two

zero. Thus, in homogeneous systems one has the walks with nit - ?n are exactly equivalent under

usual resu't for normal diffusion that (R
2 (t)i - t. this scaling. I-hence, the simple random walk is

Disordered systems are charactenzed by irregular statistically self-similar. In fact it is a statistical

lattices. The nearest neighbors of a site are not fractal. Upon dilation of space by a factor of )n
/
A,

611
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Fig 3 A Sietpisti gasket drawn to the sixth generaton

the number of steps (or 'mass' of the walk) in- the random walker on the lattice In Fig. 4 wecreases by a factor of X. Therefore the fractal show a plot of In (t) against In l(R) as obtaineddtmension of a random walk is dw = In ,/ln from an exact enumerattn of all possible walks
A/'= 2. It is interesting that random walks per- The slope of the resulting curve is d., 2.32 +
formed on disordered, but statistically self-similar
structures are still self-stnfa, themselves, exactly
as for regular lattices. The impcrtant difference is
that the usual diffusion exponent. dw - 2, is no
longer equal to 2. Diffusion is anoinalous.

We will now illustrate anomalous diffusion by
considering a random walk on the Sierpinski gasket
of Fig. 3. The Sierpinski gasket is perhaps the
most widely used fractal lattice for theoretical
applications. This is because of the fact that it is a
finitely ramified fractal, i.e., one needs cut only a
finite number of bonds to isolate a subset of the
gasket. This property facilitates the exact analysis
of various physical models, including the random
walk problem.

At each step the walker chooses randomly to
move to one of the four nearest neighbors on A.
gasket. As stated above, we expect the walk to be
statistically self-similar. The mean square dis- In (Rplacement would grow as (R 2

) o: t'/J-, where d1 Fsg. 4 Plot of tn(1) as a function of InA/Rt0)) on ais the anomalous diffusion exponent. Note that d, Sierpisski gasket, using exact enumeration of the walks, Theis in fact the fractal dimensionality of the path of stopc is d. -2.32+001

FI
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T ANOMALOUS TRANSPORT PHYSICS

Diffusion is closely related to transport physics.
Anomalous diffusion results in anomalous trans-
port physics An excellent example is the relation

between diffusion and conductivity of a medium.

In homogeneous systems it is given by the Ei-

0 O 0 8 0 stein relation

(a) (b) O ,d =-D (6)

Fig S Rescaling of first passage tine for eiting the gasket
The walker enters the gasket at the top vertex and (a) iakes a where a. is the d.c. conductivity. n is the earner
time T to ct through the lower O.vertices. (b) The rescred density and D is the diffusion constant
gasket. T- ' and A and B are exit times from the interrt D (R

5
)/t t> 1 (7)

(denimated) ,ertices to the loner O.ertitces

The carrier density n is proportional to the mass
density of the bulk. For fractal substrata, this
scales as n ca Rd

,- d
. The conductivity exponent #1

0 01. This shows clearly the anomaly of diffusion is defined by its scaling with the linear size R,

on fractal lattices. o a R-" From eqs. (2) and (7), D a t
1 a

d
-

1 and

One can exploit the finite ramification of the using it in the Einstein relation of eq (6) we get

Sierpinski gasket to obtain an exact value of the I a R'
-

+
1

d
, 

Comparing this to eq (2) we ob-

exponent d. in the following way Consider the tam the relation

mean first passage time T to traverse a gasket unit dw - 2 - d +d, + (8)
from one of its vertices to either of the remaining This is to be compared to the classical conductiv-
two vertices 0 (Fig 5a) One can then calculate ity exponent - 0 of homogeneous media (for
the corresponding mean first passage time T' for which d, = d and d. - 2). showing the anomalous
exiting a resealed gasket unit by a factor of 2 (Fig, conductivity that results because of anomalous
5h) This is done by making use of the Markov diffusin.
property if the random walk. Thus, T' equals the A more fundamental consequence of anoma-
time T to exit the first gasket unit, plus A, the lous diffusion arises when one looks at the density
mean first passage time to leave the resealed unit of states in a disordered substrate. The density of
from then on. Using the same reasoning for the states is relevant for any physical phenomenon
times A and B (the mean exit times starting from which is described by an equation of motion that
the decimated internal vertices), one has contains the operator V 

2 
This includes, for exam-

T' T+ A ple, electromagnetic, elastic, and quantum phe-
4A = 4T+ A + B + T" (5) nomena. The density of states p(c) is related to4B-4T+2A diffusion through P(0,1), the probability of a

walker to be back at the origin at time t:

The solution is T' - 5T (and A = 4T, B - 3T), )e d
which is the resealing of time for a diffusion P(Ot) = fo
process on the gasket upon the resealing of length By the time i, a random walker has visited the
by a factor of 2. lence, d. = In S/In 2 - 2 322 sites within a volume R( cc ad,/d-. Therefore
Notice the agreement with the result obtained the wlty a reueiRgto te o r esore
from exact enumeration. This anomalous diffusion the probabilty of returning to the origin scales as
is characteristic of all fractal lattices, as well as of finds
statistically self-similar objects such as percolation finds
cluster and aggregates (61, p() cc,/di ea/- (10)



uhere d, is the spectral [7. - r fracton IS) dimen- feared in bulk aoductiity, the dcsk, of sate

sionality for the density of states. This is similar to and reaction rates in diffusion-reaction sytm
the usual expression for homogeneous media. p(c) The interested reader is rcferrcd to more complete
a Cd;'-l , except that d is replaced by the anoma- reiea-s and to the specialized literature of the
Ious d, - 2dj1 d. field.

As a final vample of the physical conse-
quences of anomalous diffusion we would like to
mention diffusion-reaction systems in contrived
geometries. It is ssell known that the reaction rate REFERe"ES
in diffusion-limited reactions is proportional to
the %olume covered by a diffusing reactant par- I Fo a reiw- of rphtr a ffusixa Se GIL Weis a=d R.
tide per unit time (this is known as the Viner Rrtan. Rar.da= w2A rbcuy and =p75&soa. A dews'

sausage problem). Clearly, this is critically af- I ChS-,-PSmy. 52 1 9K) 363-505.
& laI~ia acd D. bea-Amra.h DIXlNma= in d*"dCrcd

fected by the irregularities of diffusion uhen the - . des t -shA. D6 M 695-s7M TL 3.d
substrate is a statist'cal fractal. This intriguing rd. 3 ae w=9tXmuary rcv- prx Rda to the rala
topic is discussed in detail in the paper by Kopel- ca resi oMC rek-es.
man ct al. [9]. 3 W. ta= 2-d K.W. Kdmr. Diffa&jin retl =nd -

mdrerd btijcs. Pryas RsWm-s. i0 (t1M :6-.416.
4 SM. tm "smp. RB Ma&& w&-ror. Ffakcs Fom. C-ahee

-ad Dsa.. Frriasa. Sa= Franciso. CA. 1977: T/e
SUMMARY Fmcrdf Ge. " 4f ,ars. Fn a Sa Fr"aisco. CA.

We have presented an elementary discussion of 5 L Pur ro nd E. Tatu (E. ,s. Feads . Pto .

the basic properties of fractals and how fractals ,on to10112 Asnsnrt. 19S6.

are useful for the modelling of disordered media. 6 F. Fasily. CAOac carn rad lagh e'g i. ores..
Diffusion in disordered media was shown to be 7. Ra=al and G. Tomiloust. Jaa..l de Ph -q.e. La:r.
anomalous in that rather han following Fick's law too Frer). 44 (19S3) LI3
(R2> tt. it obeys (R

2
) ct

2
'j-, %here d. is the $ S Atxand, and R. Orba3c J-o-,d Pkyn . eLarua

anomalous diffusion exponent and is dependent (On,.Y F r)e. 43 (19'2) 15
upon the specific characteristics of the substrate in 9 SR Kop.man. L . Arenkon. E Ci . L U IM L

question. We then discussed some of the dramatic Sond .. or ir. m Ir.,idh..rl L a or goo Sp en. tO

consequences of anomalous diffusion, as mani- (1991) 127-132.
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Discussion of "Diffusion in disordered media"' by
Daniel ben-Avraham

George if. weiss
Xn¢ 1,n l=r ca f li a 2& s L 2 rDL92IS..j

Profesor ben-Avehar-, in his icid artide. has in w'hch. on a givn step. the random walker can
indicated some of the simplest chersc;crizations of mowe from site s to j + I with probabilit p, or to
traaspon in a dLmd =eavd U. Whiat wmakes - I withl probability I -p.. The p, are a.iumcd

the general analysis of such problems so difficult to be independent. idenucal!, distributed random
t, th.t the characterisic function cannot easil, be variables whiich satisfy the conditions
used to genetate explicit representations of the
solution to problemis in uhich the medium is pot £'li,2 L.2 ; 0I
translationally invarianL NCvet reXiC. because -P. I-p
phenomena related to disordered media arise nat- I1
,:aly, in a variety of scientific fields the general
area of diffusion in such media has become one of Let X. be the location of the random ,valker at
central interest in contemporary chemisity. step n. Kesten shows that the random variable
mathematics, and physics. A sampling of some of o:Xnn c Averges in distribution. and finds an
the many appications of the theory is to be found explicit representation of the distntion as an
in the a resic, by Alexander et al. [I]. a proceed- infinite series. Unlike the examples cited by ben-
ings of a meeting edited by Klafter ct al. [21. Araham. the mean-squared displacement of the
Excellent more comprehensi%c retiews of the sub- random walk satisfies
jcet have been given by Haus and Kchr [3. and by
Ha% lin and bn-Avraham 141. E( x.

Since one cannot, in general, find solutions to in
4
n - constant (2)

the equations describing transport in a disordered
medium, how does one go about calculating some as n - x. There are many obvious generalizations
of the properties of anomalous diffusion? Natu- of this model for ,%hich one uould want to see a
rally, in a field uhich has been so widely studied, solution, but for which there are no exact results
a great many theoretical techniques have been asailable either in the literature of mathematics or
tried, most of which lead to approximations to a physics. For example, it would be most desirable
solution rather than explicit solutions. While a to extend these results for the Sinai model to
precise definition of the term "explicit solution" analogous random walks in higher dimensions, in
may contain some ambiguity, the only nontnvial addition to removing the restrictions on possible
model of a disordered medium for which all of the steps of the random walks that they be to nearest
interesting transport properties are basically neighbors only. Another useful generalization is
known is one originally suggested by Sinai [5). The that of obtaining an exact solutien of the corre-
exact solution is due to Kesten [6]. Sinai's model is sponding first passage problems for such random
that of a random walk on a one-dimensional lattice walks in the presence of absorbing boundaries.
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Rcated material b) Solomon for the one-dimen- the solution to eq. (3). Thee are taken to be the
sional case has been presented in the mathemati- solution to the coupled set of equations
c:l litemiurte 17. and a more heuristic approach
hasbeentake in the physics literature to land the 4.0) J- '(t - -)q.(-) d-

asymp'otic suriv'ad probability for a Sinai random (4)
walk on a finite line bounded by traps at either ((= Kl-'flq. 3 ()-q~lT)] d..

end [8. Clearly. it uould be most useful to have
further models for trnsport in a random environ. n 1.2.3....
merit that can be solved exactl). if only because Thus. ,he Markovian equations in eq. (3) are to be
most analyses of such problems that have ap- replaced by the coupled set of non-Markovian
peared are approximate and one always likes to equations in eq. (4) in terms of an as )et unde-
have a benchmark for purposes of comparison. termined kernel. K(r). What we observe in the

In the absence of general methods for solving formulation of eq. (4) is that the approximating
problems of transport in disorderd media incsti- random walk takes place on a line whose proper-
gators have reso.rted to a large number of both ties are translationally manant. Ihe crucial step
approximate (n hich start from a rigorous formula- in the uffc ;tise medium approximation is a tech-
tion of the dynanics) and heuristic techniques nique for calculating the kernel K(t) in terms of
which enable one to understand the dynamics of properties of the k,
such processes. We will mention just two of thtse A formal solution to eq. (4) is readily found.
because of their popularit%, although not neces- Introduce the Laplace trm-.fo.ms 4.(s) and 9(s)
saniy their accuracy, in any gi'en problem. The by
first rather general method goes under the heading-e
of the effectise medium approximation, although iJ,(s) =J )dt
there are many variants in the literature. To see 5

the basic ideas behind this method in the context K(s) = e-"K(t) dt
of a grossly simplified model, let us consider a f
lattice random walk on a line in which the random One readil) senfies that the Laplace transform of
walker moses in one direction only. which we the solution to the s)stem of equations in eq. (4)is
choose to be the positie x direction. Let k, be the
rate constant for the random walker to mose from M.s) = K"(s)/[s I- K(s)]+* (6)

to i + I. and assume that the random walker is In order to find an expression for Ks) we
mitialls at i = 0. We will assume that the A, are replace the original formulation gisen in eq (3) by
identicallh distributed independent random %ana- a model in "hich only a single rate is random (it
bles. Let p&tr) be the probability that the random doesn't matter which one) while the remainder of
Aalker is at n at time i. These probabilities satisfy the medium is regarded as has ing the properties of
the equations the effective medium defined in eq (4) Let A, be

the single random rate constant, and let p. (I) be
= -Avp 0 (t) the probability in this modified model, the ran-
% . _ip._l(t) -Ap,(r). nit= 1.2.3.... dom walker is at n at time t. The p,_(t) satisfy

(3) the set of equation in eq. (4) with the exception of
the indices j and j + I for which the equations

While these equations are readily solved exactly. I become
will use them to illustrate the basic ideas behind
the effective medium approximation as well as a P,,(1) =fA(r-r)pi (7) da-Alp, (t)
number of related techniques which have been )

used in solid state physics. In the context of the (7)

present problem, one assumes that there are a set 't(t) kcp, (t)- J'K(t-'r)p . ,.(r) dr
of probabilities, (q.(t)). which approximate to a
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The Laplace transform of the kernel K(t) is then errors incurred in the use of the effective medium

found from the solution to the transform of the set approximation in the context of a simple one-di-
of equations in eq. (7) by requiring that the expec- mensional example is contained in the review by
tation of the solution to the modified system be Haus and Kehr [3]. One of the attractive features
equal to the solution for the state probabilities in of the effective medium approximation is that it is
the effecti~e medium. i e.: no harder to treat problems in three dimensions

qj() = E( p,..,(t)) (8) than it is for one-dimensional problems and the
accuracy of the approximation generally increases

A solution for the Laplace transforms Pj(s) and as the number of dimensions increases. This is not
P, .(s) is readily calculated from the combina- true for a number of other techniques that have
tion of eqs. (4) and (7) to be been applied to this general class of problems

(e g. the renormalization group approach sug-

{K(s) gested in ref. 9 which is restricted to one dimen-
= (s -(s))'(s + k,') sion only).

(9) Finally. %e mention a complete phenomeno-
kl'(s) logical approach that has been successfully ap-

,(s) = (s+k,)[s+/k(s)] '
*1 plied to problems of the transport of carriers in

amorphous semiconductors [10.111, as well as to

On making use of the requirement in eq. (8) %Ne models for chromatographic kinetics [121 In the
find that K(s) is the solution to first of these applications the transport is gener-

ally non-diffusine, while in the second it may or

I = E(l_ (10) may not be diffusive. The model on which the
s + lk(s) I;'k analyses are based is known as the continuous-time
"here %%e have omitted the subscript on / because random %salk (CTRW) in the iteiature of physis
of our assumption that the random rate constants and physical chemistry [13,141 This class of mod-
are identically distributed. It is easy to confirm els is based on the simplest picture of a random
that the 4.(s) can be expressed as walk in which the displacement on a given step

and the time between successive steps of the walk
E'(s)=E (-

4 
-E -- k (11) are both assumed to be identically distributed

7_+AE +Lk )independent random variables The space and time
which implies that the crucial quantity for our variables arc often assumed to be uncorrelated so
model is the expectation E[k/(s + A)) or. equiv- that the probability (or probability density) for the
alently. EII/(s + k)) displacement r, that follows an interstep time t

In the present completely trvial model it is can be written in factorized form as
possible to show that eq. (11) is equivalent to the
result found by taking the expectation of the exact f(rt) =p(r)4(t) (13)
solution of eq. (3). This solution is Only in the case in which 4,(t) = k exp(- At) is

oka2 ... A I  the resulting process Markoffian However, it is
Ml(s) = (s+ ko)(s+.A) (sk. ) (12) known that provided that the first moment of

) (t) is finite and the variance-covariance matrix
The identification of exact and approximate solu- for the displacement consists of finite elements.
tions is not readily demonstrated for more general the asymptotic properties of the random walk in
models, and in fact the solution to the analogue of an infiite medium will be those calculated by
eq (10) generally requires the solution to a tran- means of the central limit theorem, which is equiv.
scendental equation 131 What this means in prac- alent to ordinary diffusion 114).
tice is that one is practically limited to the calcula- The principal idea put suggested by Scher and
tion of properties in the limit s - 0, or equiv- Lax is that a detailed description of randomness
alently, in the limit t - oo A discussion of the in a medium can be replaced by the randomness
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Abstract

Kopelman. R, Anacker. LW. Clement. L,. Li. L and Sander. L. 1991 Low dimensional reaction kinetics and self-organation
Chemomieirs and Intelligent Laboratory Systems. 10 127-132

Dultutnon.hmied reaction kinetics becomes anomalous not only for fractals. with their anomalous diffusion, but also for
low-dimensional tone and two) and disperse media, where the random walk As compat We cmus on annislation, recombination and
trapping reactions under non.equiiibnum steady state (steady source) or batch (big bang) conditions The typical ieactions are
A + A - Products. A + 8 - Products and A + C - Products We are interested in the global rate laws, and their relation to
particle-particle distinbutions te g. pau-correlation and nearest.neighbor distibution functons) and in local rate laws (if definable)
Anomalous reaction kinetics (more than classical kinetics) Lu partutlatly sensitive to initial conditions, source term structure,
conservaion laws (eg, equal densities for A and B). excluded olumne efersts and medium sue. dimensionality and anisotropy
Analytical formaisms, scaling arguirenits. computer (and supercomputer) simulations and experiments ton ic hencal and physical
reactions) all play an Important role in the newly emerging picture

INTRODUCTION retical understanding of steady-state rate laws and
the kinetic self-organization of atoms, defects and

This work can be viewed as a natural extension elenentary excitations in low dimensional media
of the activity dealing with relaxation phenomena This theory is presented below.
and transient kinetics problems in disordered Diffuston limited trapping is of particular inter-
media [1-41. It, domain of application spans van. est in studies of energy migration and lumies-
ous areas of the physics and chemistry of con- cence [1,51. We present below some new simula-
densed matter. For example, ieactions of the type tions and their relation to theory. This includes
A + A - 0 or A + T - T are models describing both rate laws and self-ordering. Of particular
exciton kinetics in disordered molecular crystals interest is the resulting anomalously high partial
or polymer blends. Reactions of the type A + B -n order of reactions as a function of trap concentra-
0 are found in solid state physics in the case of tion,
electron-hole annihilation or defect fusion. A 'Big-bang' reaction models are simpler than
combination of experiments and Monte-Carlo steady-source models. The ptoneering work has
simulations [51 has paved the way for a new theo- been done by Ovchmnkov and Zeldovich [6[ and
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by Toussaint and Wilczek (7J, with applications to 4) A A Afractals by Klafter et al. 1I], Kang and Redner [9]and Klymko and Kopelman 110]. However, theseignored both fimite size effects and finite correla. 0) AA A G  A AAtion effects (at time zero). We demonstrate herethat these finite extent effects give rise to new W, T f A T AA Tscaling effects, i e, anomalous time exponents andreaction orders. In particular, for the A + B reae. Fig I Schemaic repesertation of the three cases of selforganization on a one-dimensional system The arced do.
tion in one-dimension the time exponent rises mainsrepresentedhereareoftheorderofA. thesetorganiza.from 1/4 (Zeldovich value) to 3/4 or I (depend. uon scate. t(a) is a depleton in the A+ A -0 case 1(b) B atg on boundary conditions). segregatian i the A + B - 0 case t(c) is a trap-picle defile.

tion in the A+T- T case

THEORY STEADY-STATE DIFFUSION CONTROLLEDBIMOLECULAR REACTIONS 
where 7 is a characteristic !ime which is situation

dependent. For d, > 2, A is microscopic and mde.In the classical picture, all bimolecular reac. pendent of t, therefore no large scale structuretions are the same and the distnbution of re- exists and the reaction kinetics is classical. Theactants is at random Also, the reaction rate is case d, = 2 is found to be the critical dimension ofproportional to the product of the reactant densi. the problem, where we find a marginal logarithmicties (overall order of reaction X= 2). Previous dependence of A with T. Below the critical dimen.works show that the time dependence of such sion, large scale density fluctuations become rele.reactive systems, relaxing from an initial random vant and each situation has its own phenomenol.situation, exhibits anomalous decay rates in low ogy (see Fig. 1) In partiular, we may find macro-dimensions due to local fluctuations in reactant scopie reaction laws with anomalous reactiondensity [6-9 . ere we teport the results of a orders (larger than 2) or anomalous rate constantstheoretical investigation on the steady state prop. In all the cases investigated we found that theerties of three different bimolecular diffusion scaling behavior of the self organization lengthImited reactions, taking place on regular can be case M an interesting general way ForEuclidean spaces and on fractal structures 111-13). every dimension we can write:We show that the relevant parameter describing
the steady state of the reaction kinetics Is the A/a=S,/V,spectral dimension d,. The spectral dimension is where a is the microscopic scale, S, is the volumean intrinsic parameter characterizing energy trans. effectively explored by a particle during the time tfer properties, and in particular, diffusion in a (nurn er of distinct sites visited) and V is themedium. For Euclidean structures, d, is the total (cumulative) volume swept out (proportionalEuclidean dimension d, and the case of Euclidean to 7).spaces is viewed as an extension of the fractal case In bimolecular diffusion limited processes thewhen we take d = d,. The reason for the influence overall balance between reaction rates and steadyof the spectral dimension on reaction kinetics is state densities is accounted for by the Smoluchow.due to the fact that d, controls the time depen. ski boundary condition:deuce of the number of distinct sites visited by a Q (p,)/Arandom walker. For spectral dimension d, < 2 we Q Zshow that a bimolecular reaction induces a self- where pt and p2 are, respectively, the steady stateorganization of reactants up to a scale A such densities of reactants I and 2 (1 and 2 can bethat: 

identical species). The scaling dependence of the
self.organization scale A on T is at the ongin of

A 
1i-rii d, < 2 (1) the non-classical behavior.
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In the case of homomolecular annihilation, A In this case we obtain at low density an effective
+ A - 0, A is a typical scale of depletion around reaction order:
each reactant and r is the typical reactant hfe-time X- 4/d,
with:

On the other hand, if the decay is controlled by an
rP/Q intrinsic mechanism A - 0 and B - 0, with the

where p is the stead, state density of A. We same rate constant K, then we have
obtain an anomalous effective reaction order: K

X = 1 + 2/d, d, < 2 (2) We induce a K dependent segregation but no

In the case of heteromoleculai annihilation, anomalous reaction order These last three cases
A + B - 0, X is the stale of a self-organization are important for practical applications because,
phenomenon called segregation. At steady state, besides geminate particle creation, it is difficult to
domains of identical species with sizes comparable find a source satisfying the exact conservation
to X build up in the medium The situation is constraint However, though the conservation is
more complex than in the homomolecular reaction not exact, these cases lead to a mesoscopic segre-
case and " is found to be dependent either on gation (or a total saturation).
source conditions or on some intrinsic particle life For the trapping problem, A + T -r T, the
time We separated the source terms into two fluctuation of the trap distribution is found to be
main catego,,e. In the first category we consider unimportant for the leading sfaling behavior of
sourt.es fo which at any time an identical number the self organization length A The relevant fact is
of As ani. Bs is conserved in the medium. If that we have, for d, < 2, an organization of par-
reactants at, created at random, we find: tides A around the traps The typical lifetime at

T. L2 steady state is
7r p/Q

where L is the system size. We observe a size
dependent segregation. With the same conserva- with p the density of A and Q the reaction rate
tion constraint, if the particles are created as A-B The scale of the trap-particle organization is
pairs with A and B separated by a distance 8, we A C I -2/a,
have. where c is the trap concentration We have the

7 -2 anomalous rate law,
The segregation scale becomes dependent on S. It Q - pcC/d. (3)
is important to notice that for geminate creation,
we obtain a microscopic segregation scale and this with an anomalous order relatively to the trap
situation becomes analogous to classical kinetics concentration.
In the second category, we consider sources where X - 2/d,
the conservation constraint is removed. If no other and we note that the overall reaction order is
decay mechanism is present, fluctuations in par- I + 2/ 12 a the or eA s
ticle difference grow until we have a complete 1 + 2/d 2 , the same as for the A + A r 0 case.
saturation of the loop with one of the species.
There is no reactive steady state. If an extra (first
order) decay mechanism is considered, fluctua- SIMULATIONS OF STEADY-STATE TRAPPING
tions grow up to a size defined by the intrinsic
lifetime of the decay mechanism. In particular if We tested the trapping eq. (3). The Monte-Carlo
we consider vertical annihilation with an external simuations at the John von Neumann National
rate of particles R we have: Supercomputer Center give, for the Sterpiski

gasket, a partial order Y- 1.02 + 0.02, with re-
r R-1 spect to the particle density p, and a partial order



130 Chemomeincs and Intelhgent Laboratory Systems 0

(a) 44 a.. ,, .,..- SIMULATIONSOFATRANSIENTA+A -OANDA+B
-0

-. , 'We have employed three types of landing rela-

. - tionships: correlated, random and evenly spaced
Vol_" landings. When a particle is added to a site oc-

.A * . . .* cupied by another particle, the landing particle
Y •-. A 'A ", may immediately try to land on another empty

site, which is called 'forced landing'. Particles
1 ;-, randomly move on a lattice

* ,o .. ACorrelated landing occurs when a pair of par-
a. ticles lands simultaneously, separated by a certain

SO.. " number of lattice spacings (il) One particle of the
, *. pair randomly finds an empty site on which to

• 34 J.- P" A #0 . land; then the other particle chooses a site in a
-- -- , U.. random direction at the correlation length dis-

tance from the first particle. If this selected site
for the second particle is occupied, both particles

(b .of this pair will repeat the process described above
At- -a4 -. A t i L until they find two empty sites at the correlated

& As,' . i A ,. distance.
. . " Random landing occurs when two particles of a

%; * A " pair are independent of each other, and all sites in
- - :. a lattice have equal probability for a particle to
" . land. Effectively there are no 'pairs'., a .A...J 

=  
. :'t"

, - Evenly spaced landing is used only in simula-
. -. * • C l .C . t-& ions of transient reactions Particles are distrib-

•i ' -":-] a uted throughout the lattice, and have an equal
.-k A A distance between each other. This interval is equal

7 A* .to L/NO and is chosen to be integer, where L is
. t :.Ak - .. A the lattice length and No is the number of the

. . .. ' . particles at I - 0...t. ~~~~ ko, .*A"':, ". *k c 1£
,
,

, *t- ' ., - Since the kinetic equation can be written for
- A -. , long times,

" - C. *(4)

Fig 2 Distnbution of reatants for to different trap con- the kinetic data is plotted as In p vs In I. The
toitrattons on a percolation ctuster at cnucahty The iaps are least linear square fit is applied to find the slope
the blak circles On Fig 2a the trap concentrahon is 0 05 On
ri& 2b the tiap concentration is 0 005 of each part of each line. which is equal to -a in

eq. (4).
X - 1.47 zk 0 02, with respect to the trap density c.
This is in excellent agreement with the predictions Correlated hunding for A + B -. 0
of eq. (2): Y -I and X- 2/d, - 1.465 (d,'
1.365). Similarly, the simulations for the critical A. For t= 1. Two kinds of landing are in-
percolation cluster are in excellent agreement with vestigated. One is a pair of particles of AB with a
the eq. (2) predictions Y''I and X 2/d,= 1.5 definite orientation (eg, AB AB AB...). The
(d, = 4/3). In addition, the depletion zones around other one is a pair of particles of AB with random
the traps can be seen qualitatively in Fig. 2. orientations (e g. AB AB BA...) These two cases
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00 "1 Random landing for A + B -0

"1 Two types of boundary conditions are applied:
- ,periodic and reflecting boundary conditions In

-4) both cases, the slopes increase (from the value
-36 0.25) at long times (see Fig. 4), which is consid-

\(3: ered to be a finite size effect However, important
-48 \(21 differences between these cases were observed.
6( ....... , The a-value is higher with periodic boundary eon-

20 4B 76 t04 132 16o ditions (-1.0) than with reflecting boundary con-
In I ditions (-0 75).

Fig 3. In p/po vs. In t for A + B -. 0 transient reaction on
one-dimenslonal lattice (30000 sits) s, ih p - 0 05. From top
to botton, the correlated landing lengths are 1000. 10. 64.16. A + A -, 0
and L The dashed lines are fitting tines. (1) with the slope 0.5.
(2) "Cth the slope 06. (3) wih the slope 07. and (4) sih the Both random landing and correlated landing
slope025 processes are simulated. Under the periodic

boundary conditions, neither the effect of corre-

have shown the same result - a straight line with lated landing nor the ftnite siee effect cats be

a slope 05. It is important to notice that this found in the A + A - 0 case (see top two ines in

result is the same as that in the A + A - 0 case Fig 3), straight lines are found with the slope
(see below). 0.50. However, under reflecting boundary condi-B For ( > 1. The slopes of the lines increase tions, at long time, a slight deviation from the

(from a value 0 25) after t > t1 (see Fig 3), which slope 0.5 is observedOur results essentially agree with preliminary
is considered to be the effect of correlation in

landing processes. As i? increases, the slopes, at continuus models [14), replacing the Zeldovich-

long times, increase toward the value 0.75. Kang-Redner tme exponent -d,14 (for d. < 4)

For n > 1, there is no finite size effect. i.e no with -(d, + 2)/4 (for d, < 2), for tightly corre-

second transition of the slope was found (see the lated systems or tinite-sized lattices However, they
bottom cure in Fig. 4) emphasize the relative importance of the averageinterparticle distance and the finite scale of the

lattice or of the correlation in the source. In
00 particular, for geminate landing, we do not ob-

serve a change in slope at late times.
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Abstract

Weitz, D A, Lin. hI Y and Lindsay. If M, 1991 Universahity laws in coagulation Chemiometrics and Intelligent Laboratory Sisteo.
10 133-140

We show that the process of Arreersible. kinetic, ollind aggregation exhibits universal behavior. independent of the detailed
chenscal nature of the colloidal particles Modem methods of statla physrcs, applied to a kinetic growth process provide a good
basis to model the observed behavior Two limutng rcgimes of colloid aggregation are identified rapid aggregation, imted solr'y by
the diffusion of the growing clusters, and slow aggregation, invited by the reaLtion rate that leads to the formation of bonds between
the clusters In each regime the cluster structure is fractal. with fractal dimension dt, - I 8 for diffusion.linsed clusters and di - 2 1
for reaction-limited dusters A swaling method is used to compare dynam, light scattering data obtained from completely different
colloids aggregated under the two imiting cnditions, Thrse data provide a critical .ompansoan of the behavior of the different
colloids. and confirm the uieersality of each limiting regime of colloid aggregation

INTRODUCTION the great complexity of the problem has limited
the extent of our understanding of the process

The aggregation of colloidal particles to form The structure of the clusters is highly random and
larger clusters is a process of wide technological disordered, making a quantitative analysis of their
importance and of great scientific interest. It has shape quite difficult. Furthermore, a wide variety
been the subject of serious scientific study for well of different types of behavior can seen for even a
over one hundred years. However, until recently single colloid. This has precluded the development

of a simple theoretical understanding of this com-
plex, yet important process.

Present address National Insittute of Standards and Tech. More recently, however, significant progress has
nology, React AIM. Gaithersburg. MD 20899, US A. been achieved in our understanding of irreversible
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colloid aggregation [1-31. The impetus for much tion of the structure of the clusters. The cluster
of this progress has been the recent developments structure is highly random and disordered, and
in statistical physics Scaling concepts, wuch have had long defied any quantitative description
found so much success in describing such reversi- However, the cluster structure can, in fact, be
ble processes as phase transitions, have now also quantitatively parametenzed by means of a type
been applied with sinilar success to irreversible of symmetry, that of invanance under a change in
kinetic growth processes, such as colloid aggrega- length scale, or dilation symmetry. Thus colloidal
tion Indeed, recent work has shown that irrevers- aggregates can be characterized as fractals [6], and
ible colloid aggregation exhibits universal behav- their structure can be quantitatively parameterized
mr. which transcends the chemicals details of the by means of their fractal dimension [7) The aggre-
particular colloid system, and which provides a gation kinetics, and the shape and time evolution
unified, and relatively simple, description of this of the cluster mass distribution can both be
complex process [4,51 In this paper, we present a addressed through the application of scaling, in
brief review of the recent applications of these this case, in time The shape of the cluster mass
concepts of modern statistical physics to colloid distribution is found to be invariant in time, with
aggregation, and discuss the universal features that all the time dependence described by the evolution
have emerged. of the average cluster mass [8,91.

There are two general classes of colloid aggre- The fundamental property which determines
gation which have been widely studied [1). Both the nature of cluster-cluster aggregation is the
begin with a monodisperse suspension of small, form of the interaction potential between two
solid particles undergoing Brownian motion When colloidal particles as they approach one another
the aggregation is initiated, the diffusive motion of [101 Colloidal particles which are stable against
the particles leads to collisions between them, aggregation have some form of repulsive interac-
causing them to stick together and form larger tion which prevents two approaching particles
clusters In the first class of aggregation, the clus. from touching and sticking together This repul-
ters. once formed, no longer diffuse, and all aggre- sion is often due to charged groups adsorbed on
gation is due to the accretion of single particles the surface of the colloidal particles, but can also
This class is called single particle aggregation By arise from other sources, such as a thin coating of
contrast, in the second class, the clusters them- polymer on the particle surface The height of the
selves continue to diffuse, collide and form yet resultant repulsive barrier, Eb. must be much
larger clustcrs As the clusters grow, what began as greater than kT for the colloid to be stable
a monodisperse distribution of single particles against aggregation If E, is reduced, colliding
evolves into a very complex distribution of clus- particles can surmount the barrier, and stick to-
ters of different sizes. This class is called cluster- gether, thus initiating the aggregation process. The
cluster aggregation Both types of aggregation have rate of aggregation will be determined by the
been extensively studied theoretically. However, probability, P, that two particles will stick upon
most experimental studies of colloid aggregation colliding. This is determined by the height ot -
have focused on the cluster-cluster class, as it is by remaining barrier, and is given by P - exp( - ;/
far the most commonly encountered. kT).

Several key features characterize any aggrega- The eifponential dependence of the sticking
tion process [3). These include the structure of the probability on E, makes the aggregation rate very
clusters, the kinetics of the aggregation and the sensitive to the value of the repulsive energy bar-
shape of the cluster mass distribution and its rier, and a very wide range of aggregation rates
evolution in time. It is in the description of each can be obtained with any colloidal suspension.
of these features that the application of modern Ilowever, there are two characteristic, limiting re-
methods of statistical physics and the concepts of gimes of aggregation [11. In the first, the repul-
scaling has provided such progress. The first ap- sive barrier is removed completely, so that E, <<
phication of these techniques was to the descnp- ABT and P - 1. In this case, every collision results
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in the particles or clusters sticking to one another, descriptton is well sutted to describing the physics
and the aggregation rate is limited solely by the The basic simplicity of the underlying physics
time between diffusion-induced collisions This facilitates modeling the aggregation process The
class of aggregation is called dffusion-limited col- models developed deal solely with the nature of
loidal aggregation (DLCA). In the second regime, the interaction and the resultant "rules" which
the repulsive barrier is reduced only a small determine how clusters move and stick to one
amount, so that E, > k8 T, and P is very small. In another. Thus, these models are independent of
this case, a large number of collisions are required the detailed chemical nature of each colloid, and
before two particles or clusters stick to one should apply equally well to all colloids. It is in
another, which limits the aggregation rate. This this sense that the description of colloid aggrega-
regime is called reaction-lnited coiloid aggrega- tion should be universal.
tton (RLCA) The two regimes lead to very rapid
and very slow aggregation respectively, and have
been recognized as such in the traditional colloid THEORY
literature 110). However, they also form two linit-
ing types of behavior, with distinct, and universal The two hnting regimes of cluster-cluster ag-
features characteristic of each. gregation have been studied ex'ensively, and an

The 'rules' which determine the aggregation in elegant and detailed picture of their behavior has
each regime are quite simple. In DLCA, two clus- now been developed [1,3] The theoretical work
ters stick immediately upon contact, and the diffu- has entailed two basic approaches the simplicity
sive nature of the motion of the clusters plays an of the rules of the aggregation make computer
important role in determining both their structure simulation a very powerful method for studying
and the aggregation kinetics. The diffusive motion both regimes, and considerable knowledge has
ensures that the clusters always stick to one been obtained about the structure of the clusters
another at the edges, making the resultant aggre- and the shape and time evolution of the cluster
gates significantly more tenuous. By contrast, in mass distribution [12] The aggregation kinetics
RLCA, the sticking probability is so low that, on and the cluster mass distribution have also been
an average, statistical basis, two clusters can adopt studied extensively through the use of the
any bonding configuration that is physically possi- Smoluhowskt equations [13]. These are a set of
hle, since the clusters have sufficient opportunity rate equations which assume that the aggregation
to explore all possible configurations Thus the rate between two clusters depends solely on their
diffusive nature of the cluster motion does not masses Scaling techniques have proven to be well
play a signific.,t role in the aggregation process, suited to the study of these equations 18,9]. Expert-
and the clusters to longer stick solely at the edges, mentally, a wide range of colloid systems have
making their struiture significantly less tenuous been studied using many different techniques Ex-
In both regimes, the bonds between particles, once cellent agreement is obtained between the experi-
formed, are assumed to be both permanent and mental observations and the theoretical predic-
rigid, so that no further change in their structure tions (14,15].
occurs as the aggregation proceeds. Each regime is distinguished by several distinct

The nature of the interparticle interactions de- characteristics, the clusters formed in each regime
termines the kinetics of the aggregation process, are fractal, so that their mass scales with their
the kinetics in turn play a significant role in radius as A. = (R/a)

, 
where a is the radius of a

determining the structure of the clusters formed, single particle and d, is the fractal dimension,
and the shape of tie mass distribution of Olusters. which is non-integral and less than the dimension
Furthermore, since a very large number of clusters of space. For DLCA. dt - 1.8 while for RLCA,
are involved in any aggregation process, and since d- - 2.1. The cluster mass distribution in each
the details of the structure of each clusters are not regime exhibits dynamic scaling and can be writ-
as important as the overall features, a statistical ten as N(M) = Al

2
.J(M/'Af), where the scaling
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function, 4,(M/M) describes the shape of the DLCA. the salt concentration is 0.9 M. while for
cluster mass distribution and is independent of RLCA. it is 0.6 3L The interpartice bonds are
time. %,hile Mf is the mass of the average cluster believed so be silica bonds.
and reflects all of the time dependence of the The polystyrene latex has a = 19 nmt and is
aggregation. For DLCA. N(M) is slightly peaked diluted to %% = 10 '. It is initially stabilized by
around the average mass with an exponential charged carboxylic acid groups on the surface of
cutoff at larger masses. For RLCA. the duster the particles. Addition of IICI to a concentration
mass distribution has a pouer-law form with an of 1.2 1 is used to neutralize the surface charges
exponential cutoff at large mass. NA(M) - and decrease the screening length to initiate the

'I exp(- M/M). The kinetics of the ag- aggregation for DLCA. For RLCA. NaCI as added
gregation are determined by the time dependence to a concentration of 0.2 M. to reduce the screen-
of M: for DLCA. Rl grows lirearly with time. ing length and initiate the aggregation. The par-
%%hile for RLCA it grows exponentially with time. tide surfaces deform on bordtng leading to large

Van der Waals interactions between the bound
particls.

EXPERIME.TAL To study the aggregation of each colloid and to
critically compare their behavior in the tuo re-

To experimentally demonstrate the universal gimcs. %e use light scattering 1161 Static light
features of colloid aggregation. "e compare the scattering is used to measure the fractal dimension
behavior of three completely different colloids. of the clusters. while dynamic light scattering is
gold. silica and polstyrene latex [4]. Each colloid used to follow the aggregation kinetics. In ad-
is comprised of a different ma.enal. each colloid dition. the dynamic light scattering data obtained
is initially stabilized by completel) different func- from each colloid in each regime can be scaled
tional groups on their surfaces; the aggregation onto a single master curve. The shape of this
for each colloid is initiated in a different manner, master curve is ser) sensitrve to the features of the
the interparticle bonds in the aggregates for each aggregation process. depending on the detailed
colloid arc different, and each colloid has a differ- structure of the clusters and the shape of the
ent primary partice size. However. each colloid clusters mass distribution. ltoneser. all features
can be made to aggregate by either diffusion- particular to the individual colloids are scaled out
limited or reaction-limited kinetics, of the master curve, allowing the curves from the

The colloidal gold has a particle radius of a = different colloids to be compared directly, with no
7.5 nm and an initial volume fraction of 9O = 10'. free parameters, providing a critical test of the
It is stabilized by citrate ions adsorbed on the unisersality of colloid aggregation in each of the
surface The aggregation is initiated by addition of two limiting regimes [4].
pyridine, which displaces the charged ions, reduc-
ing the repulsive barrier between the particles. The
amount of pyndme added determines the aggrega. RESULTS
tion rate: for DLCA, the pyridine concentration is
10-2 1l. while for RLCA. it is about l0-

s 
1L The Static light scattering measures the time aver-

interparticle bonds are metallic, aged scattering intensity from the sample. f(q), as
The colloidal silica used is Ludox SM obtained function of the scattering wasesector. q (4in/

from DuPont It has particles with a = 3 5 nm. A)sin(0/2), %here A is the incident wavelength in
and is diluted to 0o = 10-6. It is initially stabilized vacuuo, n is the index of refraction of water, and
by OH- or SiO- on the surface. The pH is kept 0 is the scattering angle. Dynamic scattering mea-
< 11 by addition of NaOH and the aggregation is sures the temporal autocorrelation function of
initiated by addition NaCI, which reduces the fluctuations in the scattering intensity resulting
Debye-Hdckel screening length, thereby reducing from the diffusive motion of the clusters. We
the repulsive barrier between the particles. For measure both the total scattered intensity and the

I-i
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tions wWhave dg IS6 for hc-gald dg= I
for the silica and J, I M for the polysxtyrne. To
wvithin the esperimnenial error of rouighly ±0.05.
these results are identicaL By contrast. the lower

- three data sets. which arc obtained from clusters
prepared tinder RLCeA conditions, have con-
sistently higher valtues of the fractal dimensions.
with d-=114 fortheg: old. d, - 207 for the silica
and d, - 2.09 for the polystyrene. These values are

::Iz 2 :Sagain equal to within experimental error. Thus;
.*- these rcsilts demnonstrate the untiversal behavior of

the- structure of the fractal colloid aggregates in
Rj. L Sui=5 i.sux =:,r= triiize dho o& 3c,-% each of the two regimes.

=z he in iw rep.i Th 1-2 "i i Dynamic light scatterintg probes the diffusive
k~rxith F" &d=..,mrau Ie fr-Wu Muunwe. Or Le dcus

K_ Ad 0. fr~lt :e$ motion of the edusters. When the clusters are large
3r, r, DLCA. Ms f gw tc, x I," enUV = -- ough tt their internal fractal structure can he
&V palverw 4. -f.,rI RLCA. !I4 ., I- d VU s ( X f4, resolved, both their translational and rotational

diffusion contribute to the fluctuations 1171. Here.
sse consider only the first cumulant 1181. or the
initial logarithmic derivative c' the autocorrelation

autoco.-Tclation function concurrently as functions function of the intensity fluctuations. This is given
of the scattering. annec. and iicnice the scattering by l,' q:Dfi(qR,). uhere the effective diffusion
wasesector. The excitation source is the 4S-n coefficient reflects the contribution of both trans-
line of an Ar' laser, and the accessible scattering lationsal and rotational diffusion When qR, -i 1.
vectors% are 0.003 _<q _50.03 nm -.1 only translational diffusion contributes and

Static light scattering probes the internal StrUC- Dd.,(qRt) =D = Q/R*. %here - AxT76=i1 and
ture of the aggregates. Because the fractal clusters 71 is the fluid viscosity. The hydrodynamic radius
are self-similar in structure, the seatte'.iM intensity is related to the radius of gyration of the cluster.
from each cluster depends only on the product R, = PRt, with P - I- For qR, :t 1. rotational
qR,,. %%here Ris the radius of gyration of the diffusion also contributes and D,,, - 2D.
cluster. At low qR,. the internal structure of the The effective diffusion coefficient determined
aggregate is not resolved, and the scattered ietn- from the measured first cumulant is again a
sit) is isotropic, independent of q. At high qRs. weighted average over all t.he clusters in the distri-
hoaieer. the internal fractal structure ts resolved bution. It is given by
and the scattered intensity scales as (qR,) ", The
measured intensity is a vicighied average over the - ______ _______ (I
cluster mass distribut,on. However. for aggregates 4ft EiV(,I)I(qRr,)
that are sufficiently large, the total measured in.
tensity also exhibits the fractal scaling in q. allow- In the limit of qR - 0. Dfr = D. providing a good
ing d, to be determined directly. The static light measure of the average cluster size. TZR/
scattering obtained from all the colloids in each The combinatiorn of the sensitivity to the cluster
regime is shown in Fig. 1. In each ease, the data mtass distribution and rotational diffusion leads to
%%cre collected only after the clusters were suffi- a pronounced q dependence in the measured D~ft,
ciently large that qR >> 1. nhere R is an average and provides a very sensitive probe of the aggrega-
cluster size. The linear behavior in the double tion process f4,161 However, to fully explore this
logarithmic plots confirms the fractal structure of q dependence at a single point in time during the
the aggregates. The upper three data sets are ob- aggregation process would require an experinien-

tained from clusters prepared under OLCA condi- tally inaccessible range of scattering angles. In-
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curve. In each regime. the master curves for the
three colloids are indistinguishable. We emphasize
that the master curves for each colloid are ob-
tainod independently, and there is no free parame-

F7 "  
ter in comparing them. This is striking evidence of
thz universality of each of the regimes of colloid~aggregation.

r The solid lines drawn through the master cun es
are the calculated values using eq. (1). with the

l, form for X(M) expected for each regme and a

S10o 20 ;3 form for I(qR,) obtained from computer simu-

CFR lated clusters for the appropriate regime 119]. The
Fis. 1 Mi~ta cur is ob-, tnanx' d tly from d,-¢ agreement is %cry good. except for DLCA at large
ot saittnct; data froca each of the three colmc aegtod qR. 'The calculation for the RLCA regime allos-

undert Wkfison-li.m.ed oxdituon The - w, e md. us to determine the cluster mass exponent. 7 = 1.5.
Anpshabe d-owrtu, thi uravesahty of DLCA. r uhich is in accord with theoretical predictions
sold ine a d a: calcuated benioc o - Gold. + -silia. based on the Smoluchowski equations [20].

-o1 scaling values of R also allow us to de.
termine the aggregation kinetics of each colloid in

stead. ce exploit the d~namic scaling of the clus- each regmie. We show the results for the DLCA
ter mass distnbution to measure Dff overa much regime in Fig. 4. %%here 'e plot R as a function of
wider range of qR. Thus. wve determine Ddr o%er aggregation time t. in a double loganthmic plot
the range of q experimentally accessible and re- [14]. The linear behavior exhibited by each colloid
peat the measurements during the aggregation confirms the poser-law kinctics, the slopes. com-
process, as R increases. uhile the shape of the bined with the measured fractal dimensions, give
cluster mass distnution remains unchanged. The the poucr la%% for the growth of the average mass
values measured at each q are interpolated to In all cases, this exponent is 1 to within expert-
obtain a series of data ets, each consisting of mental error. The different offsets of the three
PU(q) evaluated at the same time. We normalize curves reflect the differences in the initial con-
Dif by D, and plot the data as a function of qR,
%s here the required parameter, D = /R, for each _0

set is determined empincally by scaling the data
onto a single master curve. With sufficient data,
there is always a substantial orerlap betuen data s

from different sets, making the scaling unambigu-
ous. All material parameters are scaled out, so ,.

that these master curves provide a means to cnti- 2
cally compare the behavior of completely different
colloids

The master curve obtained for each colloid
aggregated under DLCA conditions are shown in 0
Fig. 2, while the master curves for each colloid 2 0.5 A 5 10 20 So 100

aggregated under RLCA conditions are shown in qR
Fig. 3. The shape of the master curve for DLCA is Fg. 3. Master curses obtained independently from dynaroc
quite different from that of RLCA, Tins reflects light scattering data from each of the three colloids aggregated

under reaction-hmited conditions The curves are indis.the different shapes of N(tf) for each regime, tguishable, demonstrating the universahty of RLCA, Thc
with the power-law form for RLCA leading to a solid tine is the calculated behavior o-Gold, + - silica,
considerably stronger q-dependeice of the master x - polystyrene
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S0oo modifies the sticking probability at early time
0$3 Nevertheless, all colloids display exponential

2000 - gromh of the radius of the average cluster, and
- 0hence of the mass, as expected.

100 -
Soo - CONCLUSIONS

200 050 In summary, we have shown experimental evi-

dence to demonstrate the universal features of0 o,2 0 2 5 1,0 2 50 10020 colloid aggregation. Two limiting regimes are ob-
t (mi n) served- fast, diffusion-nnited and slow, reaction-

Fig. 4 The aggregation kirntis of the ditffusion.timted aggre- limited colloid aggregation Each regime follows
gallon of each of the three colloids obtained from the scaling universal laws that describe its behavior In many
of the da to the master ca.nm The slopes of the po.r-la experimental situations, these limiting regimes are
kinetics and the fractal dimensions shayw that the average not achieved. Nevertheless, the overall aggregation
cluster maass grows linearly with itin all cases o = Gold.slca. s polstlrne behavior can usually be described in terms of

these two regimes Typically the initial stages of
the aggregation are controlled by some inter-

centrations. The results for the RLCA regime for mediate value of the sticking probability, and the
each of the colloids are shown in Fig. 5, where we aggregation is not strictly diffusion-limited. In-
now use a semiloganthmic plot to show the ex- stead, at the earlies times, it can be approximated
ponential growth observed for each colloid [151. In as reaction-limted However, as the aggregation
this case, the different slopes reflect the different proceeds, and the concentrations of clusters de-
initial aggregation rates of each colloid, wluch do creases, their spacing increases, and diffusion be-
depend on the details of the chemistry Indeed, for comes increasingly important as a rate limiting
the polystyrene, some time apparently elapses be- step Titus at longer times the aggregation crosses
fore the final aggregation rate is achieved. We over to diffusion-limited 1hus, these two limiting,
believe that this is caused by the deformation of and universal, regimes provide the basis for de-
the particles which occurs on bonding and which scribing a large range of behavior for colloid ag-

gregation
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Abstract

Osteryoung. J, 1991 Inference of mecbamsm from kinetic analysis of pulse soltairasmcic data Chemometrins and Intelligent
Laboaton) Ssstems, 10 141-154

Voltanmosetty provides direct aecess to kinetic information in that the measured quantity, current, is itself the rate Kinetic analysis
of voltanmnetnc data generally focuses on the potential dependence of the current, For historical reasons, the most common method
of analyzing data is to transform the data, often by very elaborate methods, to yield a potential-dependent rate constant, ,fuch is
then plotted as a senioganthnuc function of potenual. This procedure requires extrlnsic normalization factor, which easily can
introduce systemaic error In a few instances, statistically sound methods hae hoen employed for analysis of data One approach
employs a nonlinear least squares procedure equivalent to the method of maximum likelihood In addition to providing opt.ma
values of kinetic parameters without recourse to other data, this method also provides confidence regions at a known level of
confidence This method is implemented by the COOL algonthm, which has been described An important ancillary factor is that the
COOL algonithm runs in 'real-time' for many problems Tis paper describes these alternative methods of analysis by using the
particular example of slow charge transfer The sensitivity of the analysis to chzroges in values of parameters is exanun.ed by
computation of confidence regions Then three specific kinetic problems are used to illustrate the types of questions which arise in the
inference of mechamism The first involves the search for a second order dependence of current on potential, this having been
predicted by theoretical treatments The second can anse in cases where two electrons are transferred Under what conditions is it
possible to detertmne the rate parameters for both transfers? What cnterna ensure that the varance in the data is explained by only
one charge transfer step (i e, the other is too fast to see)' The third problem concerns heterogeneous charge transfers coupled by a
homogeneous chemcal step When the second charge transfer is more favored than the first, woen does it take place through a
homogeneous reaction route, and under what conditions can this be detected' The expenmental examples include the reduction of
Zn(II) and the reduction of p-mtrsopeuol, both at mercury electrodes. The data are confounded to some degree by expenmental
artifacts, nonoandom distnbution of residuals may anse from these artifacts or from choice of overly simple models

INTRODUCTION of voltammetrir techniques in which potential is
changed only in a stepwise fashion (changes in

Voltammetry comprises a suite of electrochem- potential are instantaneous on the time scale of

seal techniques wherein the potential of an dee- the experiment). The pulse mode has many ad.
trode is controlled and the resulting current is vantages both experimentally and computattonally
measured. Time is generally a parameter of the when the experiment is earned out under the

experiment Pulse voltammetry comprises a subset real-time control of a digital computer suitable for

0169-7439/91/S03 50 0 1991 - lsevier Science Publishers BV
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high speed calculations This paper deals only where
with pulse voltammetry. However, its main points
apply to voltammetry in general k1 - k

° 
exp[ -anf(E - E0 ')] (3)

Voltammetry provides direct access to kinetic k - k
0

information in that the measured quantity, cur- b exp[(1 - a)nf(E- E (4)
rent, is itself the rate. Kinetic analysis of voltam- and C(O, 1), CR(0, 1) are the time-dependent
metric data generally focuses on the potential de- concentrations of the oxidized and reduced forms,
pendence of the current. The purpose of kinetic respectively, at the electrode surface, k. is the
analysis is generally two-fold, first to infer from standard apparent heterogeneous charge transfer
the rate data the mechanism by which chemical rate constant, referred to the formal potential,
transformation takes place, and second to obtain E' , 

for the reaction
values of the rate constants or other parameters
wluch characterize the system. Here this general 0 + ne-; R (5)
problem is introduced by describing a straightfor-
ward example, the simple, first-order slow transfer a is the 'charge transfer coefficient', f = F/RT=

of an electron. 38.9 V-i at 25
0 C, E is the electrode potential, i

The phenomenon of potential dependence of the current at an electrode of area A, and n the

the rate is well-known and was first formulated number of electrons transferred (eq (5)) This
empiically in the Tafel equation [I formulation ignores the effect of charge on theelectrode and corresponding charge distribution in

= a + b log (1) solution. For an elementary process, n = 1 In

general it is found that even for more complicated

where 71 is the overpotential (potential nunus cqut- processes, eqs (2)-(4) describe the experimental
librium potential), is the steady-state current, result, although the value of n in eqs. (3) and (4)
and a and b are empirical constants. The experi- may be less than that in eqs (2) and (5) (Elec-
ments which gave rise to this observation em- irons transferred after the rate-determining step
ployed large concentrations of oxidized and re- do not contribute to n in eqs (3) and (4).) A
duced forms in contact with an inert electiode, so complete description of a mechanism ideally con-
that the equilibrium potential was well fixed, and sists only of elementary steps However here, for
so that small excursions of potential from the convenience and generality, ve retain the symbol
equilibrium value would not significantly change for n, and do not distinguish between the overall
the concentrations near the electrode This mode value and that which applies to the rate-determin-
of kinetic measurements dominated the study of ing step.
electrochemucal kinetics for the next 50 years. The technique of normal pulse voltanmetry

It was not until the development of polarogra. leads to a simple closed-form solution to the diffu-
phy by Heyrovsky in the '20s and '30s J21 that ston equation under linear, seminfinite conditions
changes in concentration near the electrode and with eqs (2)-(4) as a boundary condition. Thus
resulting diffusion were treated mathematically. quasireversible charge transfer under normal pulse
After World War 11, the confluence of mathemati- voltammetric conditions provides a straightfor-
cal expertise, the computational power offered by ward example of the types of questions which
computers, and improved electronics permitted arise in kinetic analyses
dynamic experiments in which potential could be The current which flows in response to the
changed rapidly and automatically. An ap- potential perturbation of normal pulse voltanme-
propriate formulation of the current arising from try for quasireversible charge transfer is given by
the reduction of reactant 0 to product R under (3)
these experimental conditions is + / Xp(V)erfc(sr"2

)

i/nA kl-/Co(0, t)- kbCR(0, 1) (2) (6)
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where The typical experimental procedure is as fol-
S= K(l+ )O- " (7) lows First note that as X2t -. oo, eq (6) ap-

proaches

ka/D DR (8)
K = expnf(E- E/ 2) }  (9) i(1) m (A + (12)

and when this is true (i e, k/ and kb are large in
E1'2 = E"' + (l/nf) ln(Do/DR)i/

2  
(10) comparison with the rate of diffusion), E= E/ 2

id = nFAD i2cq/(r1)I
1
/

2  
(11) when i(t)/t d = 1/2. Thus E/2 is measured in this

way using data from an experiment at times suffi-
Do and DR are the diffusion coefficients of the ciently long that the kinetic effect is negligible.
oxidized and reduced species (eq (5)), 0 and R, When this regime is experimentally inaccessi-
respectively, the initial uniform concentration of ble, E,/, may be obtainable through measurement
O is C;. that of R is zero, and t is the time after of E

°" 
(eq. (10)) This is done by preparing a

the potential is applied at which current is mea- solution containing high concentrations of both
sured The quantity id is the 'diffusion-controlled forms of the redox couple (0 and R. eq. (5)) and
.urrent. the maximum .urrent which can be ob- measuring the potential of an inert electrode placed
tamed under these conditions A typical result therein This route also has problems, in that the
conforming to eq. (6) is presented in Fig 1 reduced form, R, may be unstable

Eq (6) provides a means to calculate the cur- When c is small, that is, E << Erl2, i attains its
rent i(t) at any potential and time, given the limiting value of id (eq (12)) Thus, by carrying
values of 1d, EI/2. a. k.

, 
Do , and DR Typically out the experiment at sufficiently negative poten-

i(t) can be measured, for various values of t, over tial, id is measured.
the potential range of interest. The objective is to Depending on the value of na. the approach of
see whether the results conform to eq (6) and to t to the value I. may be very slow, and a slight
obtain the salues of the kinetic parameters, a and increase in I with increasingly negative potential
k 0

.  may be confused with unwanted contributions to

20

15
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POTENTIAL VS. SCE (VOLTS)
F.. t Normal pule lotammetic reduction of 0 99 mAM Zn(l) m 1 0 M NaNO. SMDE (small drop), 1. 0 5 s. t 0 0t s (u)
Expenmental poits. (_) optimal theoretical cure calcuated for E,', - -0971 V. 0 23, Iogs(tK'/) - -0 81



144 Cheiomencs and Intellgent Laboratory Systems X

the current from other processes. In the example
of Fig. 1, the current has not reached its limiting 0
value at the most extreme potential

The third step is to obtain the current as a
function of t and E over ranges of values for
which the kinetic effect manifests itself. Using the 3o
data from these three steps, the quantity i(E, t)[1
+ (I/id is computed for each experimental cur-
rent From eq (6),

i(E, t)[1 +c]/zdei/2x exp(x
2
) erfc(x) 20

f(x) (13)
where x = At

1/2
.Having thus obtained values of

(x), the function is inverted to obtain values of
At1/ 2

, and thus A. Comparing eqs. (3). (7), and (8), 1

k, Do-'X/(I + c) (14)

Measurement of 'd as a function of t or c
allows one to determine Do, provided n and A
are known Thus ,1 can be calculated The quan. 00
tity k/(E) is then plotted as a function of E to
obtain a from the slope according to eq. (7), and
k. as the value of kf at E= E '. Note from eq - -i0 -tin(10) that this also requires the value of DR, which t ,v
may be difficult to measure if R is unstable. Fig 2 Seottloganthrme plot of data of Fig I according to eqA plot of tI vs log i is a 'Tafel plot' (ef eq (3) wth anous choices of 4f/ 2 (V) (0) -0971, (o) -0 981,(1)), and the similar plot of log i vs. E is usually (13) -0966, (4) -0961 These potentals are indicated bygiven the same name. By extension, the plot of log arros on the figure The range 0 1 < '/I d < 0 9 is also indh-
k/ vs E is a 'Tafel' or 'Tafel-like' plot. This eaten
scheme for obtaining the potential dependence ofthe rate thus has arisen naturally from the earliest < -120 mV Thus, as i approaches 1d, eq (13)empirical observations, becomes independent of c Second, for large x

Ati/z
, 

f(x) (eq (13)) is insensitive to At/l
. 
For

example, for x = 2, df(x)/dx = 0073 but for xDATA ANALYSIS = 10, df(x)/dx - 0 00097. In the range of large
x, small errors in ld, which cause only small errorsThe measurement errors associated with this in f(x), result in large errors in x, and thus in k,.procedure have been described in detail [4). Even Third, (1 + c) increases exponentially for E>without considering the experimental details, it E /2, and thus small errors in i at small I canshould be apparent that this procedure and all cause f(x) to be larger than its maximum value ofother procedures which are similar in requiring unity When this is a problem, the analysis isnormalizations and computation of k/ using data always 'improved' by choosing a more positivefrom different experiments are unsound. In par- value of E112. These points are illustrated in Fig.ticular, the result for a is very sensitive to the 2, which displays the data of Fig. I according tovalue of E;I1. the scheme presented here with four different val-Consider the following characteristics of the ues of Ej ,2, the optimal value, obtained as de.functional form. First, ( < 10-4 for n(E- Ej',2) scribed below, and both smaller and larger values
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For negative potentials of about -1.06 V, all of confidence ellipsoid along a line passing throughthe points are the same, because c << I Even for the optimum and parallel to the a-axis The valuethe optimal value of Ei/2, the value of lnlP/(1 + of b is given asymptotically by exp(X5
,/mn (1 -f)J deviates from the predicted linearity for poten- W . lt stials much more positive than E,/2, because smallerrors in El/Z or in I are magnified by the large b - exp(x 5

/n) (17)values of c used in eq (13). More positive values where m is the number of experimental points andof E1'12 increase the range of linearity, and thus X2 
is the chi-squared statistic for appropriate levelappear to be 'better' values. Conventionally it is of confidence and three degrees of freedom.felt that experimental errors may dominate out.

side of the range 0 1 < id < 0.9, which is indi.cated in Fig 2. THE COOL ALGORITHAn alternative approach to the analysis of volt.ammetric data which is statistically sound has This method has been implemented by meansbeen developed and described in detail (s To of an algorithm (called the COOL algorithm).explain this approach, for simphcity we use as an which incorporates the modified simplex al-example the kinetic problem just discussed. The gocithn to search for the optimal values, and themodel yields a dimensionless current function, ,, secant algorithm to calculate the intervals of thehere (ef eq, (6)) confidence ellipsoid The important features of the
,, (1 + 0)-i'rl1/Al/2 exp(m) erfc(A\i/2) procedure in applications to electrochemical kinet-ics are as follows.(15) (1) The treatment is independent of 4, any coin-Examining eqs. (15), (7), (8), and (9), the parame- putational technique may be used to calculate

ters sought are identified as is, K, and EI,. The any for any model for use with the COOLexperimental currents (E, t) re then analyzed ( g1)according to the linear equation (n) The data are not transformed or manipulatedPrior to analysis
r(E. r) a , E(1, , + c (16) (ii) No normalizations are required: in particular,

no data from other experiments are requiredby finding the optimal value (4, k?, -I',:) which (iv) Offset in the current scale does not introducemaximizes the correlation of i with i (or mini. bias.mizes the complement of the correlation coeffi. (v) All of the data are used. There is no require-cment, (1 - r)), It is assumed that experimental merit that the experimenter truncate the dataerrors are normally distributed with zero mean it at some point.has been shown that this procedure is equivalent (vi) Confidence regions may be calculatedto the method of maximum likelihood, Of course, there are other examples of statisti.-In addition, the confidence region for the quan- cally reasonable approaches to this problem. Theytity (al k, 4/, 2) is determined at a known level of are, however, remarkably sparse, considering theconfidence. The confidence ellipsoid may be de- considerable mathematical sophistication requiredscribed by the intervals 1., 4, 1e/. where, for for any treatment of complex kmetlc schemesexample, 1, is the size of the ellipsoid in the a studied by more complex voltammetric tech.dimension at K - m, E14  EC/s. The quantity 1 niques. This general issue has been treated re-has endpoints a' and a". The values a' and a" cently by Rusling (61. From the point of view ofare the values of a that lead to a correlation the eleetrohemist,k focusing on the experiment,coefficient r. - I - b(l - r,.) when the correlation the features which distinguish this approach fromis maximized as a function of the other two those which are superficially comparable are theparameters, K and E,12. The interval 1, is not a following. First, the COOL algorithm provides aconfidence interval for a; it is the size of the uniform treatment for all mechanisms and all pulse

& j tt,
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voltammetnc expenments. Second, the separation EXAMPLES OF QUESTIONS ARISING IN DATA ANAL-

of the linear and nonlinear parts of the problem YSIS

according to eq. (16) not only avoids irritating
experimental problems (the electrode area need We now turn to the discussion of three exam-
not be known, for example), but is also-efficient. ples of questions which arise in the analysts of
Thus interesting problems can be solved in 'real- kinetic data.
time', that is, times no longer than a few minutes (i) For slow charge transfer, is the charge trans-
Third, perhaps because the nonhnear problem is fer coefficient (a) a function of potential?
dealt with directly rather than through quadratic (ii) For cases in which t.-o electrons are trans-
approximation near the optimum point, the apph- ferred, is it necessary to consider both
cation is surprisingly robust. The experimenter charge-transfer rate processes in the model?
needs to provide only initial estimates of the (ii) For two charge transfers coupled by chemical
parameters and the step sizes for the initial siu- reaction, under what conditions does the
plex. Even silly initial guesses do not significantly chemical cross reaction need to be consid-
slow the approach to the optimum, and there ered?
seems to be no problem with false optima Thus it We consider each of these questions in turn,
is a useful rather than a dangerous tool in the keeping in nind the double objective of elucidat-
hands of a naive experimenter. ing mechanism and measuring the values of kinetic

parameters

Determination of r in complex cases

Is the charge transfer coefficient (a) potential-de-

Before presenting applications to kinetic prob- pendentP
lems we describe bnefly the :echniques employed
to obtain the dimensionless current, , for cases Modern theories of adiabatic charge transfer
more complicated than the simple example of eq predict an explicit dependence of the rate on such
(15) parameters as the energy of reorganization of the

For any first order system and experiments molecule in going from the initial state to an
with only stepwise changes in potential the dimen- excited state and from the excited state to the final
sionless current function can be expressed in the state These theories predict that the rate of charge
form of an integral equation as transfer should depend exponentially on a

quadratic function of potential. By examination of
W 60(i)- 0(t)Jo[ (y)/(, _y)i2] dy eq. (3) it can be seen that this is equivalent to

predicting that a depends linearly on potential
(18) By comparing the theoretical treatment of

Marcus with the phenomenological treatment of
where 6 and , are functions of time. This is eqs (2)-(4)(71, one obtains
solved numerically using a simple linear quadra-
t re formula to yield an expression of the form a - 1/2 + (nF/4XA)(E - E*

' 
- 02) (20)

-( , t 9 in which Xa is the potential-independent standard
Sk 1(l, t) -l bsj/k 2 (I, e) (19) free energy of activation and 0 is the potential

drop across the diffuse charge layer in the electro-

where b,. is the estimate of 4(t), b, is the estimate lyte solution near the electrode. The experimental

of (t) at = ite/I, tp is the time over which objective, then, is to test the proposition that for
potential is held constant, I is the number of at, appropriately constrained set of reactions the
subintervals employed by the quadrature in the quantity a of eqs. (3) and (4) has the form given in
interval t., s / - (j - 1 )'/2, and j - I + eq. (20). It should be explicitly noted that eq. (2)

1. does not display activity coefficients. Because
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charge transfer necessarily involves change in net Then the slope of the curve ln(k1 (E)) vs. E is
charge, the activity coefficients of reactant, prod- deterrmned numencally to give values of a(E),
uet, and transition state will in general be differ- which are then plotted against E to test eq (20)
ent Provided that they are potential independent, and obtain the value of the coefficient of poten-
activity considerations should not confound ef- tial.
forts to test relation (20) by the analysis of cur- The values of a obtained point by point are
rent-potential data obtained from the curves of Fig. 2 according to eq.

Consider first the graphical method of analysis (21) and plotted against potential as shown in Fig
based on eq (6), which assumes that the charge 3. Clearly the result for E / 2 = -0.961 V is 'best',
transfer coefficient is independent of potential. If that is, it is linear over the range 0.1 < i/Id < 0.9.
instead a has the form of eq. (20), then a plot of By choice of range in each case, a slope, a(anf)/
In(kf) vs. E according to eq (3) will be curved. A 3E, can be deterinned. For the lines in Fig 3, the
common way of using this method to test eq. (20) slopes are 26 1, 9.6, and 2 1 V-

2 
for E ='/2 =

is to define a by -0.961, -0.971, and -0.981 V, respectively. A
predicted value in this case is 70 V

-2 [8] which,
considering the uncertainties involved, agrees rea-

a= -(I/nif) d[ln(k/(E))]/dE (21) sonably well with the value of 26 V-2
. Thus, a

30

28

26-

24-

ant, 22

20'

096 104 1 12 120
-E, V

- Plot of a values obissned from Fig 2 by means of eq (7) against potential to test eq (20). Symbols as Fig. 2. range
0.1 <i/1d <09 shown, and E£/z values indicated by arrows.
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value of El,2 which is in error on the positive side as suggested by eq. (20). Typical fits according to

(for a reduction) not only improves the linearity of the four-parameter model yielded values of (1 -
the result but also yields a spurious potential r.) and S/N no better than those of the three-

dependence of the charge transfer coefficient, parameter model, with a typical value of a, =

The literature on this question is confused. 0.0002 ± 0.0002 (1 e. I,. - 0 004). (Here S is the
There are papers describing charge transfer coeffi- slope, a, of eq. (16) and N is the root mean
cients which are potential-dependent. Some of square deviation of the experimental points from

these, which report results in accord with theory, the optimal theoretical curve.) The predicted value
have been refuted. These potential dependencies of a, is 0013, or ain2f2=79 [8]. We conclude
have been inferred from data by methods similar that a does not depend on potential, the experi-
to those described above, or by methods some- mental evidence provided by these authors
what more sophisticated but containing the same notwithstanding.
fundamental flaws We have examined this ques- The power of the COOL algorithm in this
tion in detail using the COOL algorithm for analy- analysis rests in part on the identification of E/2
sis of data (9] Two models were employed, one as a parameter. The resilience of the analysis to
equivalent conceptually to that described by eq changes in the laboratory reference potential is
(15) (but incorporating factors to take into account illustrated in Fig 4, which presents results for four
the interfacial charge distribution), thus having nominally identical experiments Rather than just
three parameters, and an alternative one with the presenting the confidence intervals, a more exten.
formulation sive calculation was employed, to compute the

boundary of the confidence region in each of the

three planes of the parameter space. The deviation
a = no + ainf(E - (21) of the optimal value of E 1 2 for the curve of panel

02 + *

-am 0. : .okm -1ota 0 t200 WM"0O

Fig 4 Normail pulse vohtammogram for I mHt Zna(ll) in 0 3 Mf KNOj, SNIDF medium drop size, potentials vs. saturatea ,.alomel
electrode, Panel 13 Experimental points (0), best-fitting theoretical cunoe (-) and residuals (4.). Panels 14, 15,16- Confidence
regions at 95%;: (-) data of panel 13; (-,-),( .... ( -... ) are for nominally identical experiments Optmal values

()The axes are: (13) iI.A) vs E(V). (14) k*(10
- :l 

orls) vs. El'/i(V); (15) a vs. Ell2V); (16) k*(10-'cer/s) vs a

I- .! !L - .
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Pg. 6 Normal pulse voltatnurogram analyzed with independent value of Ej'12 Panels 9-12 are equtvalent to panels 5-8 of Ftg 5.
respectively, wtth the exception that E)/2 ins constained to hod4 mV negative oith regard to the optinmal value found in Fing 4



13 (of Fig. 4) is a systemic error caused by a be tested by analyzing the data of F.4 by means
change in the laboratory reference potential, ibis of the COOL algorithm but fixing the value of
can be seen to haic no effect on either the optimal E,,,. In Fig. 4 the outlyitg value of E3'1. is about
values of the other parameters or the size and 4 mV from the mcan value Thus u- analy-ze the
shape of the confidence regions, data for one of the nominally identical experi-

The conventional procedure employs an indc. mests of Fig 4, -Aith the value of Ej' fixed at
pendently measured value of E,/2, (E,'I,. The (E3,) E= l + 0.004 (V). wvhere £ is the op-
effects of errors in this value on the analysis can timal value found in the optimnztion presented in
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F&g. 4. The ,alue is fixed by setting the initial step shown in i_ 6. The change in optimal value of
size to zero. The result is shotn in Fig. 5. The k,. resulting from change in El', . is expected. for
optimal theoretical curve (calculated from eq. (16) k.0 is just the rate constant at E- E- (cf. eqs.
using (. E, (Eu).)) now displays noticible sys- (3). (4), and (10)). More striking is the large change
tematicvariation fromthe expementalresult(Fig. in a. This demonstrates that El is properly a
5. panel 5). In addition, the confidence regions parameter of the experiment, and thus fixing E{',
about (&. R. (E,)) are substantially unsymmet- at some value determined in another experiment
rical. Similar results are obtained when Ej'r is precludes the possibility of accurate kinetic analy-
fxed at the value (El,,). - E ,2- 0.004 (V), as sis.

to-

-

1 0 , . .

o I I
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-Os -095 -105 -1lis -125 -135

Et v vS SSCE

Fig. 8 As Fig. 7, but points are for an espeormental voltmogram obtained under conditions nearly tdetucal to those uluch )yelded
the values of rate parinmters for the two.step nechamsm.
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Is it necessary to consider more than one charge analyzing the data of Fig. 8 according to the
transfer? appropriate model for two successive slow elec-

tron transfers.
In the case discussed above [9) a second issue

involves the detailed mechanism of charge transfer Is it necessary to consider more than one homoge-
%,hen n = 2. Is it necessaty in that case to use the neous reaction?
model incorporating tiso successive charge trans-
fers and thus six rate parameters [4]? Or, inverting A much-studied mechamsm is the so-called
the question, can anything be learned about the ECE sequence
faster of the tmo steps by this type of analysis? 0 + nie = R, E1' (22)
The issue here is more complex. for the more
elaborate mechanism can be expected to exhibit Rj k)02 (23)

non-monotonic changes in the shape of the re-
sponse, and thus to produce a non-random pat- 02 + ne = R 2  Ee

"  (24)

tern of residuals Hoever, systematic errors in in which the heterogeneous charge transfers are
the experiments can have the same effect. Thus linked by an intermediate homogeneous reaction,
the non-random distibution of residuals cannot here taken to be irreversible. When E2' >> E "

,

be attributed automatically to sigsuricant rather reaction (24) is more favored than (22), and so the
than adsentitious or trivial failures of the model, two reactions occur together at the potential for
A further problem arises when the model is availa- reduction of 01. The reason for interest in this
ble only numerically (cf. eq. (19)). The interpreta- scheme is its potential catalytic significance. Many
tion of humps or bumps in the response as arising organic compounds, especially in aqueous solu-
from specific features of mechanism (the phreno- tion, display the response expected for this sort of
logic school of kineties), always risky, is foolhardy mechanism However, when E2" >> E,", the ho-
in this case, as minor changes in the values of mogeneous reaction
parameters can produce quite striking changes in 02 + (nz/nt)R, z2 01 + (n2/n,)R 2  (25)
the appearance of the response

A typical illustration is given in Figs 7 and 8. is highly favored and provides an alternative route
Fig 7 displays the analysis of a calculated voltam- to that of eq (24) for the transfer of electrons to
mogram The voltammogram was calculated from R 2. The questions then arise, under what condi-
five parameters for two, one-electron transfers. tions is reaction (24) important in the overall
Both rate constants are referred to the standard process, and when it is important, can it be de-
potential for the overall two-electron process The tected? Or to phrase the question somewhat differ-
calculated voltammogram was then analyzed ently, under what conditions does the model con-
according to a model for a single slow electron sisting of reactions (22)-(24) explain adequately
transfer with n = 2 (three parameters). The obvi- the response?
ous pattern in the residuals can be compared with A classical example is the reduction of p-nitro.
those of the experimental example of Fig. 8 The sophenol 110] Experimental results for p-nitro-
exvenmental conditions of Fig 8 are nearly iden- sophenol are presented in Fig 9 together with the
tical to those which produced the data on which optimal theoretical curves for the simple model
the theoretical calculation of Fig 7 (5 parameters) comprising eqs. (22)-(24). To the eye it would
is based In the experiment, noise and systematic appear that the correspondence is adequate For
experimental artifacts obscure the interpretation, these data r, = 0.998, and typical values of I are
The pragmatic conclusion is that the more simple 0.2-1 s

-1
, depending on the experimental condi-

model explains adequately the variance in the tions. There is considerable advantage in using
data This leaves open the question of whether the this method to determine values of k, for the
data contains information about the faster dec- addition of the second order reaction, eq. (25), to
tron transfer step This might be obtained by the model complicates the mathematical formula-
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-ass-a,$ -02$
FOTENTIAL VS SCT (VOLTS)

Fig. 9 Formard, reverse, and net experimental currents (o) and optimal theoretical cunes (---) for square wase voltarenetnc
reduction of p-ritrosophenol in 20% (v/v) aqueous ethanol, 0 1 M1 acetic acid, 0 1 M potassium acetate. 0 1 Mt potassium mitrate,
00005% Triton X-100 9'/2- -01334 V, &.-2 09 s-', e -O

tion enormously. Are the optimal values of k and efficient way to proceed with interpretation of
the associated confidence regions reliable, even if kinetic measurements
the model is 'wrong' in that it does not incorpo-
rate eq (25)?

Unfortunately there does not appear to be a
general answer to this question, even if it is re- CONCLUDING REMARKS

stricted to problems involving only two parame-
ters For the case of Fig 9 there is reason to These three examples raise issues commonly
believe on empincal grounds that this question addressed ad hoe and qualitatively in electrochem-
has an affirmative answer [11]. This is an unsatis- ical kinetic studies The optimization technique
factory conclusion, in that it relies on an intuitive presented here provides a rigorous evaluation of
argument based on example, rather than on objec- the correspondence between model and data in
tive criteria. The present statistical approach deals near-real-ttme. This may be used to discriminate
only with the description of phenomena, and thus between alternative models and to examine the
cannot deal directly with questions of this type. It power of the data to yield mechanistic informa-
could be a useful tool, however, for computational tion.
investigations of this and related questions. Al- In favorable cases, the algorithm may be used
though the results could only serve as a guide, to identify and quantify a minor feature of the
computation is so much less expensive than ex- mechanism. Equally important, and more difficult
perimentation that this could well be the most to demonstrate convincingly, this approach may
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be used to show the absence of an effect Finally, normal poise potarogoaphy in the study of electrode inet.
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Abstract

Sipson. DOG. Gun. S. Siatks. J. Biet,. I A. Ituehuec and F. Nelsen. T. 1991 Relating chromatographic data to measurements of
uheai quality cas studies in dimension redaioton Cbemornetries and Inteligeni lAhsrto" Sistems. t0 155-167

Er~inin heai proieins by resersed phase higls-perlormarn, liquid ichromatugraphy yields extrenmely somples shiomais.
giA iss The data they ientain may relate is many thaeAsierisiis of milled uheai su0 as the sotume of a loaf ot bread oi ihe textue
of ihe dough produted. hui suth relationships arc noi readily apparent Itom the caw data We report oui espoenmes, with to
dimension reduiron techinques that Amc widely tcs in thu ishensometritlerature pransipal tsamiponent Analysis and paiiial least
,quire& (PE.Ss Lath ot these methos replaces the original obsecvation vetses by weighted aciages of theni sstmponenu. where ihe
ueights ame seleujed attordig is A data dependent racrion Thu analysis procemle hy opewraig on these weightedl astagcs athet
than the oniginal. high-dimensional dita Iu order to elusidate properties of uigmhate tests and oiher inferences. ur lI-u en the
specil -w serne only one toris selexcd We uhow hosw io usc simulation is compute the appropriate smgnitic~anc lesel of the
reg~resin on the P1,5 stores The tommon technique of using the 'dutribution in compute sigssiiwnc lesels for P1.8 iogression

xcon be an extrenmely liberal procesdure The interpretation of P1,8 weights requires consierable care

INTRODUCTION Icing from samples of wheat, there is considerable
interest in developing the statistical technology for

Witth the advent uf modern high-performance relating thcst; ch1romatographs. itngerprints 1o the
liquid chromatography (HPLC) for analyzing pro- attributes of milled whteat [I] Viewing a wheat

0169.7439/9i/ 50 SO 1991 - Elsevier Science Publishers B V
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sample as the basic experimental unit, it is typical projections that account for the joint variation in
that the number of independent observations the two sets. PLS regression, in particular, selects
(wheat samples) is small, but the number of char- one-dimensional projections of the predictor van-
acteristics available for study on each observation ables that have large covariance with the response
is large. For instance, there appears to be a multi- [4,51. Because the projections depend on the re-
tude of active sites on the chromatogram that sponse as well as the predictor variables, classical
might potentially be included in a model for pre- regression theory does not strictly apply. For in-
dicting various attributes of the milled wheat. stance, we demonstrate that comparing the PLS F
Standard statistical methodology, e.g. multiple hn- test for the regression to the F distribution can be
ear regression, cannot be applied directly to the an extremely liberal procedure.
raw data because the nominal dimension, that is, Both the principal component projections and
the number of measurements on each experimen- the PLS projections are affected by the choice of
tal unit, exceeds the number of independent ob- scales for the different components of the raw
servations, leading to ill-posed estimation prob- data. Changing the scales differentially can drasti.
lems. cally change the nature of the projections selected

Dimension-reduction techniques are based on For this reason many authors suggest standardiz-
the premise that much of the information col- ing the raw data componentwise prior to further
lected on each observation is redundant, and that analysis. In our examples we center but do not
some lower-dimensional transformations of the standardize, because the HPLC measurements at
data contain most of the information. If such different sites on the chromatogram are in the
transformations can be discovered, then one can same unit, and a change of units would affect
in principle use standard statistical methodology them all simultaneously Principal component and
on the constructed lower-dimensional data. Two PLS factors are unaffected by common scale
dimension-reduction methods that are widely cited transformations of the raw components of the
in the chemometncs literature are principal com- data, e g. the results would be the same if we chose
ponent analysis [21 and partial least squares (PLS) to express absorbance in different units Applying
[31 After describing these methods briefly, we a nonlinear transformation (e g. a logarithm) does
illustrate their use on typical wheat protein chro- affect the results, and the selection of an ap-
matographic data, and offer some preliminary ob- propriate transformation is an issue for further
servations on the viability of these methods for research. Such preprocessing of the data is often
investigating the relationships between IIPLC pat- an important ingredient to the success of a dimen-
terns and attributes of milled wheat. sion.reduction technique [61.

In principal component regression the predictor There are different sersions of PLS and differ-
variables are reduced to a smaller number of pro- ent recommendations about how to choose the
jections that account for most of their variation number of projections for regression 171 Our
[2] Because the projections are selected indepen- primary interest is in how to interpret the projec-
dently of the response variable, this procedure has tions and in how to make inferences. For this
the advantage that classical regression theory may reason %%e sidestep the other issues and focus on
be applied to test for significance, to compute the special case where only one PLS projection of
prediction intervals, and so on On the other hand, the predictor variables is to be selected. In our
there is no guarantee that the principal component regression example this seems appropriate. Al-
projections contain adequate information about though each observaiion has many components,
the relation between the predictor variables and there are few observations, and one explanatory
the response. PLS has been proposed as a method variable ought to be sufficient. The important
for selecting projections that are more informative issue of bias due to variable selection is clearly of
about the relationships between two sets of vari- broader scope, and our case study may be viewed
ablsm. It makes use of the covariances to select as a telling example.
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PRINCIPAL COMPONENTS Given a set of numbers (xi, x2,...,x,), a
common measure of variation is the sample van-

Principal component analysis is a method of ance about the mean:
investigating a multivariate dataset by looking at
orthogonal one-dimensional projections [2]. By V(xI ..... x.) = (x-)+ " + (x" -
multivariate we mean that each experimental unit n
has a number of measurements associated with it. where
For instance, a given sample of wheat might be v 1 + -• +X
subjected to several different assessment of qual. n
ity, in which case the different quality measure-
ments constitute different components of the mul- The first principal component is obtained by find-
tivariate quality vector for that sample. Similarly, ing the direction ul such that the projection of the
the HPLC pattern might consist of absorbance at dataset has maximal sample variance, that is.
50 equally spaced points on the time scale, in V(xui.. XAuI) = max V(xiu. , xu)
which ease the 50 measurements comprise a 50-di- .,1-1
mensional vector assoiated with the given wheat The second prinm.ipal component is obtained by
sample. The usual goal in principal component maximizing the variance of the projections on
analysis is to replace the large number of compo- directions orthogonal to u. In general, the kth
nents on the onginal scale with a small number of principal component maximizes the varian.e of
new components consisting of the orthogonal pro- the projections on directions orthogonal to
jections that account for the largest portion of the (ui . u -.
variation in the dataset at hand. In using this construction for dimension-reduc-

A direction vector is a vector of unit length, tion the hope is that most of the relevant variation
where the length of an arbitrary vector x = is accounted for by the first few principal compo-
(x,... x,)' is given by nents. For instance, it might be that most of the

variation in a set of chromatograms is accounted
Ax + + x.+ for by a few peaks.

A number of software packages and programs
Io fo lxi. Ihe uy lxi is vete irti thec m have routines for principal components analysis
tor for x. If y is ar ther vector with the same icuigBD.Mntb AadUsrm
number of components, then its projection on x is including BMDP, Mmtab, SAS, and Unscram-

j.'X J 'C + +'PXbler In addition, programs that perform the ei-
y'x YiJi + "+pxp genvalue decompositions needed to get the prin.

l x1 I x vii cipal components are widely available, e.g., LIN-
The number ),'u is the component of y in the PACK and S.
direction of u. For example, suppose u is the
direction vector (1, 0. 0, 0,._0)'. Then y'u -Yi.
the first component of y. PLS PROJECTIONS

A key idea in dimension-reduction is the pro-
jection of a dataset. Suppose a dataset consists of Principal component analysis attempts to pro.
nI vectors x , ,.., x. each having p components. duce a small number of directions that capture

most of the variation in a single set of vector
x, = (x ..... . i = I ., n observations An alternative dimension-reduction

has been proposed in the chemometrics literatureProjecting each of these vectors on a directon when the goal is to relate two sets of vectors.
vector u yields a new dataset c., one-dimensional Given pairs of vectors (xl, 'i).(x,',) the
observations, the components of xI, ., x. in the idea is to find directions u and v1 such that the
direction of u:

projections of xi , ., x, on u, and the projections
xu-x...of '., o , on vi have large coincident variation,
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This is the basis of the PLS algorithm (31, which xi.., x. and Y, . . , are selected to maximize
uses the projections on these directions as the correlation [81. The CCA directions are the ones
input variables for least-squares regression, with the strongest linear association for the data at

Specifically, for pairs of numbers (x,, Y,) . hand, whereas the PLS directions have the highest
(x,, y,,) the sample covariance is given by coincident variation. Unfortunately, CCA is ill-

posed in the present setting where the nominal
(x, - . .)(y- dimension of the data exceeds the number of

C ( x= ...... x,; )'I .Y,) =- independent observations. One can achieve perfect
n sample correlation by weighting on any n- 1

and provides a measure of the extent to which the linearly independent columns of the data matrix.

x and ) values tend to vary together. PLS uses
the covanance as a criterion for selecting the REGRESSION ON CONSTRUCTED COMPONENTS
projection directions ut and v,.

X pu1: vi... Consider the ease where y has only one compo-
nent, whereas x is of high dimension. This is the

= max max C(xu...xu, Yiv.. y'v) case in the examples below, where y is a particu-
1I H 1nii lar attribute of milled wheat and x is the HPLC

As in principal component analysis, one can iterate determunation of protein composition Recall that
the procedure and select additional direction vec- the regression of y on x is ill-posed if the number
tors that maximize the covariance in directions of components of x exceeds the number of ob-
orthogonal to previously selected projections. PLS servations PLS attempts to circumvent this prob-
has almost invariably been described in algorith- lem by regressing y on the linear combinations of
mic form, but Frank (4) and Hoskuldsson (5) have x selected according to the maximum covariance
pointed out that the algorithm selects covariance criterion. Similarly, principal component regres-
maximizing directions. sion involves regressing y on the linear combina-

PLS provides a simultaneous dimension-reduc- tions of x selected by principal component analy-
tion for x and y. For the special ease with either x sis. In each case one uses the constructed variables
or y one-dimensional the solution can be written 21 = X'U1, Z2 = x'u 2 , and so on as the regression
down explicitly Suppose y, - y,. a scalar, for i variables for predicting y. In the ease of principal

.n. Then the solution is given by components the ordinary theory of multiple linear
regression can be used to compute standard errors

S(j-)(and prediction intervals, because no information
J about y was used in the construction of zi , z2,

- etc. In the ease of PLS the usual theory is map-
, (yk- - propriate, because of the dependence of the con-

structed :1, 2, .. on y. Further discussion of this

where . is the vector of componentwise sample point is given below. It is clear that ordinary
means for x-, . x.. In this case ui may be recog- principal component regression can fail if the lin-
nized as the direction of the vector of slopes from ear combinations of x with the largest variabilityp f have little relation to y. PLS is an attempt to
the least-squares regression of x on y. In general
the PLS algorithm is easily programmed. It has avoid this ptfal! by selecting linear combinations

been implemented in the program Unscrambler, that vary together with y.

which Is available for IBM-PC compatibles. We
have programmed PLS regression in S and FOR- A CLASSIFICATION EXAMPLE
TRAN.

PLS bears a resemblance to canonical correla- The first example is a dataset consisting of
tion analysis (CCA), in which projections of HIPLC runs of 43 samples of durum wheat. There
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A Group 42

0 t 20 30 40 so 60

B Group45

0 10 20 30 40 s0 60

Fig. Chromatograms for 43 samples of Durum wheat (A) Group 42. (B) group 45

are two groups labeled '42' and '45' depending on not for group 42. Ths peak was present only in
which of two proteins is present at a certain locus five analyses of one variety (Langdon), so its
on the chromosome, as determined by electro- appearance in group 45 seems coincidental.
phoresis It has been found that the presence of As the difference between the two groups is
protein '42' indicates a variety with weak pasta obvious in Fig 1, any reasonable procedure ought
quality, whereas protein '45' indicates strong to be able to recover it. We employed composite
variety. This example offers a test case for whether classification rules in which we first selected one
the dimension-reduton techniques can 'discover' or two orthogonal weight vectors by principal
this relationship. The experimental technique for components or PLS, and then applied Fisher's
the HPLC is descnbed in ref. L linear discriminant rule [91 to the scores obtained

Figs. IA and B show the chromatograms (ab- by projecting the data on the weight vectors. The
sorbance versus time) for the group 42 and group effect of this composite rule is to select a single
45 samples. Each chromatogram contains 330 direction vector, say w. that is a linear combina-
equally spaced Measurements over the range 5-60 tion of the original direction vectors selected by
mm. The most striking difference is that the group principal component analysis or PLS The com-
42 samples have a sharp peak at 49 mm that is posite discriniant rule is equivalent to assigning
absent from the group 45 samples. Conversely, a candidate chron'atogram to the group whose
group 45 has a large peak at 44 mm that is absent mean projection on it, is closest to its own.
in group 42. Presumably this difference in HPLC Fig. 2A shows the first two eigenvectors from
results for the two groups is a reflection of the two principal component analysis. Fig. 2B shows the
proteins identified by electrophoresis, Burnouf and first PLS weighting vector and the weighted aver-
Bietz (I] cited it as evidence that IIPLC could be age of the first two principal components selected
used to identify strong and weak varieties. There by the two.dimensional PC linear discriminant,
is a minor peak evident at 18 mm for group 45 but The components of a weight vector u =
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A PCA Eigenvectors

so,1 0 010s

B Discriminant Weights
1' . CA)r)

0 0 3040s

Fig 2 Weight vectors for centered chromatograms of Durum wheat smples (A) rirst two cigenivectors from PCA, (B) PLS
projection and inear di~clminant projection bas on first two principal components

( u ., u330)' give the weights for the time-ordered ference between the two main peaks of interest

sites on the chromatogram in the constructed vari- with a bivartate linear discrimmant It is clear
ables from Fig 2B that the PLS factor is weighting

primarily on the difference between the two major
z, i xU iux + UX + 1. + U33OX350  peaks noted previously. The weighting vector that

As described above, the principal component results from applying the bivariate linear discrimi-
weights do not use the classiftation information. nant to the first two principal components is simi-

but simply give the direction of the most variable lar to the PLS weighting vector except that the
projection of the chromatograms. On the other former gives more weight to gliadns eluting be-
hand the PLS weights give the projection direction yond 50 min.
having the largest covartance with the group labels, Fig 3 is an indication of the effectiveness of

coded, for instance, as Os and Is (If there were the constructed classification variables The verti-
more than two groups we would have to introduce cal axis is the group label. The horizontal axis is

a vector of binary variables for group labeling.) It the value of the score, , = x'u. for each of the 43
can be shown that if y is binary the PLS weight samples. In each plot the vertical line is the cutoff
vector is simply the direction of the difference value for the linear discrimant rule, which is given
between ihe componentwise averages for the two by (.i + i)/2, where i, and i2 are the mean
groups, in the present case, the difference between scores for the two groups. The first principal com-
the mean chromatograms for the two groups. ponent scores, shown in Fig. 311, are not very

The first principal component weights in Fig. effective for classifying the two groups. Adding
2A appear to confound the two peaks noted above the second component reduces the error date
with several other sites on the chromatogram. The dramatically. The PLS scores, shown in Fig 3C.
second component appears to cancel out most of provide a complete separation of the two groups
the other sites, allowing us to recover the dif- The apparent error rates and leave-one-out cross-
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validation (CV) estimates of the error rates [10] The PLS classification is highly effective in this

are as follows, example, and it identifies the ghadin peaks associ-

Method Apparent CV ated with pasta quaty. Classification by PCA can

error error achieve nearly the same results but it requires two
rate rate components and a bivariate linear discrimmant. so

Pnncapal component analysis (1) 12/43 13/43 it takes a bit more effort. An alternative principal
Prnopal cornponent analysis (11) 1/43 2/43 component method is to use SIMCA, which takes
PLS 0/43 1143 the grouping into account by finding separate

principal component projections for the different

The apparent error rate is known to be optimistic, groups in the training data (14] It is not clear that
the CV estimate is generally considered to be more there is much to gain by using more complex
reliable, methods in the present example In other exam-

When only one PLS projection is selected, pies, e g. when there is doubt that all of the
applying the linear discriminant rule to the PLS observations fall in known groups, other methods
scores is equivalent to using a rule that assigns a might well yield superior results.
new observation to the group whose mean is closest
in Euclidean norm [111, that is, it assigns a variety
with chromatogram x = (xl,..., x0 )' to the group A REGRESSION EXAMPLE
with mean vector .x for which 1i x - i 11 is small-
est This procedure, known as Euclidean distance The second example concerns a dataset con-
classification (12,13], has an obvious generaliza- taming measurements on twelve varieties of hard
lion to several groups red spring wheat. For each variety we have HPLC

A PCA(I) Classification B PCA(II) Classification-a- .. .. .. ... " . .. ;
Classified 42 Classified 45 2 Classified 42 Classified 45

.5 0 5 10 15 20 25 30 .15 -10 .5 0 5 10 15
Score (thousands) Score (thousands)

c PLS Classification

2 Classified 42 Classified 45

-10 .5 0 5 10 15
Score (thousands)

Fig 3 Linear dtnscrnnant classification of Durum wheat samples using (A) first pnncipal component. tB) first to pnncipal
components. and (C) first pariat least.squarecs projection
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results of proteins extracted with 80% ethanol. In selected as a negative control in our data analysis
addition, a number of different kinds of measure- experiment, since it is a variable thought to be
ments were made of the physical properties of the unrelated to the protein composition.
grain, its milling properties, and its nuxing and Fig 4A shows the chromatograms for the twelve
baking properties as described by Nolte et al. [15]. vaneties. Each chromatogram contains 514 mea-
We selected three for detailed study. (i) loaf surements at the rate of 12 per minute starting at
volume, the volume of a baked loaf of bread from 5 nun For the purpose of relating protein content
a given amount of flour, (u) mix time, the amount to the various attributes an important issue is the
of mixing required for the dough to achieve a variability at the different sites, which can be seen
certain consistency, and (in) percentage wheat ash, more clearly from the mean-centered chromato-
a measure of the mineral content Loaf volume grams in Fig. 4B. For instance, the raw chromato-
and mix time were selected because they are known grams in Fig. 4A have a strong peak around 26
to be related to the proteins of wheat. Ash was mm that shows very little variation across samples

Raw Chromatograms

8'--

Mean-Centered

C PCA Eigenvectors

A_

Fg 4 (A) Chroaitograrns for til e samples of %heat grow in Mesa. AZ. (B) mean.eniered ihromatograms. (C) lst two
eagenveiors from PCA
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0. and appears only as a small bump in Fig 4B.
o ... Centered chromatograms were computed as fol-

0 lows:
" o l " *6 o 1. Compute the vector of componentwise means

x v = (-t, x ...... 32l,) where 3 j is the mean of

the twelve absorbance measurements for the
" " 2 jth time point.

0 0 n 2 Subtract the components of i from the corre-
1 2 3 4 5 6 7 8 9 1011 sponding components of each of the twelve

Component individual chromatographs.

Fig 5. Standard deviations (solid tine) and cumulative propor.
tions of vanance (dashed tine) for princpal components wuh
nonzero elgenvalues

A PLS Weights for Ash

B PL S Wegt fo Mx im

iO 20 30 a0 5

B PLS Weights for Mix Time

A~f

10 20 e 30 40

C PIS Weights for Loaf Volume

V-, ,'m$)

0 10 2 30 4

rig 6 Weight vetors for sontered hromatograms of twelve whut samples. kAj PL3 weights for Ash (B) PLS weights for mix time,
(C) PLS weights for loaf volume



In some instances there may be unusual chro- We next carried out the PLS computations to
matograms that have a large effect on the mean relate ash, mix time and loaf solume to the HPLC
centering. In such cases it is useful to plot profiles. Although one can treat linear combina-
median-centered chromatograms for comparison. tions of the three quality variables using PLS. we

The first t%%o components from principal com- treated them one at a time because ue wished to
ponent analysis are shown in Fig. 4C. The largest compare the predictability of these three attributes
source of %ariation is a peak or pair of peaks using the different methods. Fig. 6a-c show the
eluting at 27-28 min. The first component is first PLS weight %ectors for ash, mix time and loaf
essentially a difference across this region of the volume. The magnitudes of the weights indicate
chromatogram. The second component has contri- the relative importance of the different sites on the
butions from many sites, with no apparent domi- chromatogram according to the criterion used to
nant contnbutor. Three or four components are select the projection.
required to account for the bulk of the variation in Ve %%ere initially surprised at Fig. 6A for ash.
the chromatograms. Fig. 5 shows the standard which seemed to indicate that proteins eluting a;
deviations (solid line) and cumulative proportions 27-28 min were important for predicting ash.
of total variance (dashed line) for the principal However, an explanation can be found by corn-
components panson with the first principal component in Fig.

A Ash versus PLS Score B Mix Tne versus PLS Score Loal Volume versus PLS Score

o o o 0

0 0 0 0 0
00

0 1~0
0 0 0 0

0 3 2 5 0 2 a o 0 2 0 2 0 $ '-4 -3 2 0 2

6t S So. (ossas) ?L5S coruesa,O 5SS)e .m,"
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Fig 7 Scatier plots tor responsse variables versus PLS soores (A-C) arid PC scores (D-F)
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4C. which is quite similar. Recall that the PLS '
factor is the direction with the largest covariance
with ash. It is plausible that ash varies as the total i.
protein content varies (more protein means less
ash). Variation in total protein content would in
turn be connected with the variation in the prin- o

opal component. It so happens that peaks in the -0
indicated region show substantially greater varia- ,
tion that the other sites, so these show up in both ua o s tut - C
the PLS factor for ash and the principal compo- No'.t i- Vat0

nent. Contrary to the impression conveyed by Fi. I
6A. it is doubtful that the proteins eluting at 0 tO 20 30 40 50

27-28 min have any causitive relationship with Percoie"sofF(1.10)
ash content- Instead. it is quite likely that they F. 5. r uk-ltxc plot of 5000 MInuC Carlo-r=
receive the highest weights simply because they ated F stmss fm rctrco, o PLS fa0or .crs the F

account for the largest portion of the variability in ,ti : .

the chromatograms and. consequently, the varia-
tion in total protein content.

Fig. 7A-C are scatter plots of the three re- each sample of responses to get the PLS direction
sponse variables ash. mix time and loaf %olume for the tuehe observed chromatograms in our
% ersus their respective PLS scores. Fig. 7D- F show example. Untform deviates ucre generated using a
the same response variables plotted against the multiplicative congruential generator 'uith mod-
principal component scores. The least-squares lines ulus 2 ' 

- I and multiplier 7' 1171. Normally dis-
for regression on PLS and Principal components imbuted deviates ,ere obtained via the Box-
analssis scores are included as iaell. All of the PLS Muller transformation. We assumed unit variance
scatter plots suggest some positive relationship; for the responses, but this has no hearing on the
houseier. there is a hidden bias in these plots results. because the PLS direction %ector and the
because each PLS direction was selected to hase a F statistic are invariant to scale multiples of the
relationship with the corresponding response. One response 1111. For each of the 5000 samples we
manifestation of this bias is inflation of the false computed the F statistic for the regression on the
posities rate for the so-called F-test for the re- PLS direction. The ordered values are plotted
gression on the PLS scores. The F-test provides a against percentiles of the Fdistbution with I and
means for assessing the statistical significance of 10 degrees of freedom in Fig. 8. If this %ere the
the apparent regression relationship 1161. For sim- correct reference distribution the points should
pie linear regression, including as a special case fall %ei close to the diagonal, hoever, there is a
regression on the first PCA component, the test clear up%%ard bias that results from the %%ay the
statistic has an F distribution with I and n - 2 PLS direction is selected. The figure allows us to
degrees of freedom under the zero-slope hypothe- correct for this bias. For instance, with our design
,is. This is making the standard assumption that a PLS F of 10 is equivalent to an ordinary F of 5.
the noise terms in the regression model are inde- which has s~gnificance level 0.05. If instead %%e
pendent and normally distributed with mean zero sere to look up the PLS F value in the ordinary F
and a common variance. For regression on the table %%e would erroneously conclude that the sig-
PLS direction this reference distribution is no nificance level is 001.
longer correct, because of the dependence of the The simulated distribution of the test statistic
direction on the response variable providcs imates of the significance levels for the

To get an approximation to the correct refer- regressions of ash. mix time and loaf volume on
ence distribution we generated 5000 random sam- their respective PLS directions count the number
pies of size 12 from the normal distribution, using of times the simulated values exceed the observed

-- ° W
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values for the data at hand. and divide by the are virtually identical in this case, have a causitive
number of random samples generated. The follow- relationship or %ere selected simply because they
ing table shows the correct significance levels and show the greatest variation. Loaf volume is an
the values that result from using the Fdlistribution intermediate case, showing a moderately signifi-
for regressing ash. mix time and loaf %olume on cantly relationship with protein composition The
their PLS directions. The numbers in parentheses corresponding PLS direction differs somewhat
are estimated standard deviations that arise from from the principal component, and we have an
the Monte Carlo sampling technique. indication that proteins eluting at 17-19 min might

Respone Obsmnvcd F F-leod TIeeA be important. Further experimentation would be
needed before we could say anything conclusive.Ash 3 10- 0.3S(±000) Such information is, however, of great potentialNItixii¢ 265 41-0

-  
0 02(4"0O¢6) vau

Loaf olu IZO 0.0061 003(±0.0024) value, as it gives a tentative indication of specific
proteins that, through subsequent isolation and

Hdskuldsson 15] and others have suggested to use characterization, might explain various attributes
the F-test for the regression on the PLS compo- or sere as the basis for sensitive and rapid tests.
nent as an approximation Because of the upward
bias. comparing the PLS F statistic to the F
distribution is a liberal procedure; 'non-signifi-
cance' according to the F distribution tnpies DISCUSSION
non-significance according to the correct distribu-
tion of the PLS F statistic, but significance
according to the F does not imply significance Data analysis in high dimensions is a tricky
according to the correct distribution. The above business. There is considerable lattitude for the
computations show that the difference between selection of 'factors' that appear to demonstrate
the F-level and the true level can be quite dramatic, striking relationships. In order to separate the

Unlike the ordinary regression F statistic, the artificial relationships from the real ones, great
PLS F statistic has a null distribution that de- care should be taken to employ proper statistical
pends on the distribution of the predictor vana- inference methods that account for the multiplic-
bles Hence. this statistic has to be recalbrated for ity of directions available. One method that we
each new regression design. Monte Carlo simula- have demonstrated is the uoe of simulations to get
tion offers a means for performing this calibra- the correct null distribution of the F statistic for
tion. The exact distribution for some very special regression on the PLS direction. This provides a
designs has been worked out in ref. I1. useful screening procedure for spurious directions

The fact that certain peaks are given large Our goal in the present investigation is an
weight by PLS or principal components does not ambitious one In addition to classifying or pre-
prove that they are strongly related to the re- dicting from the chromatograns we attempt to
sponse of interest Some direction will always be tiiterpret the weighting vectors produced by the
selected, and in high dimensions it is quite possi- dimension reduction This is the most difficult
ble to obtaip a striking plot of the PLS weights aspect of the analysis and the one that is most
that is simply an artifact. From the preceding likely to give spurious results. There is less of a
calculations we conclude that, despite the impres- problem if one merely wants to predict or classify
sive loadings plot, there is little evidence of a without attempting to interpret the weighting vec.
relationship betwen ash and protein composition, toes. In such instances the PLS dimension reduc-
On the other hand mix time appears to have a tion is likely to be a useful one, because it chooses
rather strong relationship with protein compost- projections with maximal covariance with the re-
tion; however, further experimentation would be sponse. Nevertheless, as we have demonstrated,
needed to determine whether the peaks indicated the standard regression tests and prediction inter-
by PLS and principal component analysis, which vals require adjustment for the variable selection.

F- ]
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Abstract

Bandeen-Roche, K and R,.ppert. D. 1991 Source apportionment with one soure unknown Chemoeirics and Intelligent LaOoratory
Systems, 10 169-184

Attribution of local pollution to area sources is essential to effective management of the environment Source apportionment
addresses the problem by statistical inference of soure contributions to total pollution from observations of ambient air chemical
composition Mass balance methods of source apportionment use linear models wit chemcal composition vectors of sources as
covanates istoncally. mass balance methods have assumed that at least a proxy of each covanate is available and has been
accounted for

We attempt to adapt the mass balance method to the case in which umdentifted sources may exist by estimating an unknown,
possibly 'background', source Further, we allow source contrbutions to pollution to vary oser time, creating a model with a
'structural' parameter and infinitely many 'incidental' parameters We treat the 'incidental' source contribution parameters as
random quantities Investigating the properties of the distribution governing relatie source contrbutions is then of interest
Reasonable identifiabilty constraints are required in this context Nonparamem estimation of the unknown source is possible under
such constraints but is impractical for small samples which are measured with error Therefore, we desclop a parameic model for
the distrbution of the observations and examine estimates based on this model

INTRODUCTION However, factors sich as meteorology, topogra-
phy, and multiplicity of sources make predicting

One of the important problems of environmen- the effects of sources at a removed location dif-
tal engineering is to identify major sources of ficult. An alternative approach is to measure sam-
pollution and determine their relative effects upon pies of the ambient medium. Source contributions
the surrounding ('ambient') air, water, or some to pollution levels are then inferred ustng statisti-
other medium Attempts have been made to pre- cal methods. The body of methods which has been
diet cumulative effects based on chemical mea- developed to achieve such inference is known as
surements taken at individual source locations source apportionment.

0169.7439/91/$03 50 0 1991 - Elsevier Science Publishers B V
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The chemical mass balance (CMB) method of sources to pollution However, their estimation
source apportionment, developed for study of requires estimation of the unknown source profile.
atmospheric pollution, assumes a linear model for The existence of problems such as that which
the chemical composition of ambient air. The we have just described has led us to develop
chemical composition vectors of area pollution methodology which generalizes the traditional
sources, called source profiles, are used as co- CMB model in two ways Firstly, it allows for the
variates, and mass contributions of sources to possibility that all sources have not been de-
pollution are considered to be the parameters of termined by estimating an unknown source. We
interest Typically, source profiles are given in will allow an arbitrary number of known sources
terms of mass fractions - for instance, nulligrams but only one unknown source The case of one
of particulate matter with a given chemical prop- unknown source is interesting in its own right, as
erty per gram of particulate source output Source the woodstove example shows Moreover, in some
contributions, then, are often parameterized as situations where there are several unknown
concentrations - particulate mass of a given sources, investigators will be willing to aggregate
filtenng specification contnbuted by each source all unknown sources into a general 'background'
per unit mass of that specification, or per unit unknown For example, this would be sensible if
volume of ambient air. Linearity arises from the the relative contributions of the unknown sources
assumption that mass is conserved from sources to were stable over time After this aggregation of
the ambient air sampler, so that the composition unknown sources our methodology can be ap-
of the observed sample is just a sum of the param- plied, though of course only the distribution of the
eters multiplied (in a vector sense) by the corre- aggregate contribution from the unknown sources
sponding covariates Parameter estimation has will be estimated
usually been achieved using variations on stan- A second, more subtle modification is that our
dard least-squares methodology It is important to models are formulated for source profiles given in
note that the traditional CMB model treats each a form which is proportional with respect to a
ambient profile observation, perhaps time-aver- fixed set of chemical species, rather than in mass
aged, as a distinct sample In this context, vector fraction form In particular, we define a profile
elements provide repeat observations, and time vector by taking the particulate mass per unit of
variation is not accounted for in any explicit way. source output due to each member of the fixed set

As useful as CMB models have proven to be in and dividing by the particulate mass per unit
practice, the methodology has significant short- attributable to the entire set of species. This is a
comings Perhaps chief among them is the fact generalization in the sense that transforming mass
that they require both awareness of all possible profiles to proportional profiles is always possible.
sources and knowledge of their chemical composi- whereas the information necessary to perform the
tions, as is illustrated by an example described by converse operation may not be available in some
Aldershof and Ruppert [I] Researchers at EPA applications Although this course of action was
were interested in the relative contributions of taken chiefly to accommodate cases when profiles
woodstoves and vehicular emissions to local en- are only given in proportional form - the
vironments. A source profile for woodstove smoke woodstove data set is such a case - we remark
was carefully constructed, but unfortunately the that it is often possible to obtain proportional
source profile for vehicular emissions was not profiles which are much more accurate than mass
available at the time. A chemical engineer in- fraction profiles (see Kowalczyk et al [2]) An
volved in the study suggested that the profile of important spinoff of using proportional profiles,
the unknown source might be considered as a however, is that the total mass contributions of
stable parameter, and that thereby a well posed sources to pollution are no longer estimated di-
model for the composition of area pollution might rectly Instead, source contributions of only those
be formulated. As in usual CMB models, the chemical species actually measured and used to
parameters of interest are the contnbuttons of all define the profile - a quantity of interest in its
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own right - are estimated Happily, one may source-unknown case differs fundamentally from
deduce total contributions from the proportional the case in which all source profiles are known in
profile parameters if source profiles are available that its parameters are not identifiable without the
in terms of amounts addition of constraints It will be helpful to ex-

Studying the estimation of an unknown source amine the case in which observations are made
in the context of the CMB method has led us to without measurement error - in other words,
consider two other limitations of the CMB model day-to-day differences in source contributions
The first arises when one attempts to estimate the provide the only random variation In this case, a
unknown source namely the inability of the CMB simple constraint allows consistent estimation of
method to deal with the variations of source con- the parameters of interest, and asymptotic distri-
tributions over time. To understand the problem, butions for the estimates are available Measure-
consider the fact that ambient sample composition ment error complicates estimation considerably -
is determined by the compositions of known so much so that nonparametric estimation be-
sources, a constant unknown source parameter, comes extremely and perhaps prohibitively dif-
and source contribution parameters that differ ficult in a small sample context. Consequently, we
with each observation This creates, in the will propose an appropriately constrained para-
terminology of Kiefer and Wolfowitz [3], two metric model and study its behavior
classes of parameters a finite-dimensional 'struct- Source apportionment and CMB models have
ural' parameter (the profile of the unknown source) been discussed by many authors, including Coo-
and an infinite sequence of 'incidental' parameters per and Watson [4], Gordon [51, and Henry et al
(daily proportional source contributions) Any [6] Introduction of unknown source estimation
reasonable estimator of the structural parameter into CMB methodology was done following ref 1
must include observations corresponding to dis- Estimation of structural parameters in the pres-
tinct incidental parameters. However, it is well ence of incidental parameters was first discussed
known that estimation is often impossible if mci- by Neyman and Scott [7] and has since been a
dental parameters are deterministic In order to topic of continuing interest Relevant papers in-
address this difficulty, we have chosen to treat clude refs 3 and 8-10 Campbell and Mosimann
daily source contributions as random quantities [11] provide insight into parametric models for
In this context, the distribution of the incidental proportional data.
parameters (source contributions) rather than the
individual parameters is estimated.

We will address a second limitation by explor. SETUP OF TIlE PROBLEM
ing error structures which are more natural to
nonnegative vector observations than the additive, Observations in CMB models are generally the
Gaussian error structure implicitly assumed by total amounts of various chemical species col-
CMB models lected during ambient air sampling, perhaps given

Henceforth, random-proportion, unknown- as concentrations When source profiles are pro-
source CMB models will be teferred to as source portional, an equivalent, geometrically intuitive
apportionment, one source unknown (SASU) formulation of the problem results by standardiz-
models, and we will consider source contributions ing observations to proportions as well Both for-
to be those resulting from a proportional profile mulations prove to be useful in what follows
formulation unless otherwise specified. We will
develop our model, which is no longer linear, and The SASU model
examine its relationship to the traditional CMB
model in the next section. To make the exposition Although focus soon shifts to the case in which
simpler, in tlus paper only the case of a single only one source is known, we will state the model
known source will be treated explicitly. In ad- for the general case of t known sources. Let
dition to the nonlinearity of the model, the one- x,_.._ x, be p-dimensional, deterministic co-
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variates, let 0 be an unknown, p-dimensional Components of the vectors y, and s, represent
parameter. In the SASU model, xA, k = 1.m, true ambient air chemical proportions and
are profiles of knosin sources, 0 is the profile of amounts, respectively, on day i. We observe Y
the unknown soarce, and each has been standar- and S, winch are measured values of y, and s,. In
dized to proporttons We impose the resulting the next section we examine the simple case where
constraints Y = y and S, = s, We develop below a parametric

p p model for the measurement errors. Notice that in
F" x,,= E8-I (k=l ...... ) (1) the case of present interest, m=l , ,,=nx+(1

,t I -I -a,)O and s,= -y'x +.yJ0.
x.>OVk, 0 > 0

In addition, let a, (a = I. n) be independent Transformation to CMB model

and identically distributed (lid). in-dimensional
random vectors whose components are nonnega- The traditional CMI model is as follows.

live and sum to at most 1. The vectors a, repre- .+I
sent the daily contributions of the known sources, s = F , a (3)
so that the scalars (I - E3a,,) correspond to pro- A-i
portional contributions of the unknown source where Ck = total particulate mass contributed by
Let G be the joint distribution function for the source A per unit volume of ambient air on day i,
components of a,. that is, a. = mass profile of source k

G(e) = P{ a The subtle difference between the CMB param-
eters, Ck, and the SASU parameters, y', - equiv.

where the inequality holds for each component alently, a,A - occurs because information regard-
Analogously, let y,' be nd, ni-dimensional random ing the relative amounts of source outputs not
vectors with nonnegative components and yf* a accounted for by the set of measured chemical
nonnegative, real-valued random variable (i = species is lost in the transformation from mass
1, , n) y,' is the corresponding vector to a,, profiles to proportional profiles In this section we
given in terms of amounts, so that y* represents show how the parameters in our formulation as
the mass contribution of the unknown source to given in the SASU model are related to the
the set of chencal species defining the profiles. parameters in eq. (3)
We will denote the joint distribution function of Suppose one profile - say, a.,, - is un-
the components of y' and y,' to be F, that is, known. Let , 2Es,,. Clearly,

where V' stands for the transpose of the vector V x = a,,---_ , andEa..,

Again, the inequality holds for each component. J
Random variables of interest are Therefore. eq (2) is equivalent to

-a" l, + a- ~and !f..a,+
A-1 which implies that C, - ,a,,/Eiak, and c,ka=

so that at,,x,, k I ... , i (similarly for k - i + 1, 0).
Knowledge of ,, 0, and a,. then, are sufficients an n ,5  to determine c,,a,, k .1 .., in + I (Physically,); ys-' and aA 7,

c,4ak, represents the amount of the jth chemical
J xspecies contributed by source k to the ambient air

LJ
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sample on day i.) However, we Ia be estimating identifiable. To understand why, consider a simple
only the distribution of the a, values because it is transformation:
impossible to consistently estimate the a, values Let Y, - x = Z,, - x = ,, (1 - a ) = ? , It is
themselves in the presence of measurement error clear that eq (7) is equivalent to
(see below) It is possible to get a..und this incon- Z, = (8)
venience in the following way:

Let q4, = c,, a,, Then Let X, = ?,/2 and i = 20 V, = has exactly
the same distribution as Z, This means that the

q,, qA1 11/ qn a a - (4) parameters of Z, are not identifiable from its
q51  aq-,-qa,, xk, distribution. In fact, the model (7) implies that

Corrdy,,Jyj = 1 V j, I and, hence, that the p-di-
Letting x_ , =0, we have a system of indepen- menstonal system effectively reduces to one di-
dent linear equations in p(n + 1) unknowns mension
Eq (3) implies Realizing that nonidentifiability occurs because
.nl our model allows too much scaling suggests an

- s,, =O. j 1 .... p (5) appropriate constraint confining allowable distri-
A-1 butions for a, to those whose left boundary of
Eq (4) implies support is exactly 0 - that is, G(a) > 0 for each

k =1, a > 0 It follows that

hm.a( min a, = 0 with probability Ij =2. . p (6) o1 .

There are a total of p + (in + 1)(p - 1) = p(ni + or (9)
1) + (p - in - 1) equations lence, we may solve lim mm X, = I with probability I
forqt, A = 1. .,ni+l ifp ,ii+l - that is, if o-to .I,.
there are more species than known sources which means that if enough samples are taken,

If. is addition, the mass source profiles, a5 . eventually one will be composed almost entirely of
k = 1. 1 ni, are known, solution for the corre- chemicals contributed by the unknown source
sponding source contributions, c,, follow in- Our motivating example, described in the intro-
mediately. Notice that these solutions are cor- duction, provides some insight on summer days,
rected for the contribution of the unknown source one %,ould not expect people to be using wood-

stoves. and condition (9) appears reasonable
Several results follow under condition (9). When

NONPARAMETRIC MODELS there are no measurement errors, the observations
Y, lie on the line segment in p-dimensional space

No measurement error connecting the known x and the unknown 0 This
suggests a simple estimator of 0 - the observa.

For now. we vill use the formulation of the tion farthest from x In fact, it is not difficult to
SASU model for which observations are propor. prove the following.
tional. In the case where observations occur
without measurement error. Proposition I Define Y.* to be the observation

Y, )- a,(x-O-) +0 (7) Y. such that max._,..iY,-x1 2 = II Y-x,
Then Y,,* is a consistent estimator of 0 if and only

In this section we take a nonparametric ap. if condition (9) holds.
proach in that the distribution G of a, is not Once we estimate 0. we can then estimate the
assumed to be in a parametric family. Without the contributions, a,. of the knowsin source The basi.
natural constraints mentioned above and an ad- idea is that a, is the distance between Y, and 0
ditional restriction on G. the model (eq (7)) is not expressed as a fraction of the distance between x
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and 8 Note thi t Y,* is a monotone sequence and, where w denotes weak convergence and H is the
thus. j, equ! to the jth component of Y,* satis- distribution such that H(a) -1 - exp(-a-} for
fies the conditions of the following result, nonnegative values of a and 0 otherwise Lead.

better et al. [12] provide an excellent reference toProposition 2 Let 0. be such that I x. - 61 #0. extreme value theory.
Let 0, be any monotone sequence whose limit is
0. Define

F,(x) = 1 E,I(Y,, - x) = d.f.(Y,) Wth measurement error

where I is the indicator function and e d f. stands Given the results attainable in the case of no
for empirical distibution function Define measurement error, one might hope that under

4,(z ) = 0 if z < 0 condition (9) similar results might hold in the ease
with measurement error. Unfortunately, this does

F,Iz(x,-~.+~, . l if0<z<l not appear to be the case. of course condition (9)
< If < is still necessary, but introducing measurement

error makes the problem 'much' harder For oneUnder (7), G,w(z)-- G(z) thing, it makes consistent estimation of the mdi.
Define A,, = (Y,- j.)/(x -0,,) Then G, vidual a, values impossible. In the ease of no

is the empirical distribution function of { at.. . measurement error. it is possible to write a, as a
iij Because there are no measurement errors, function of tlse observations and the structural
(A,, - a,) - 0 with probability 1. As it is a matter parameter. Since every observation contributes to
of algebra to show that max < z < n I ,_ _ a, J < the estimation of 0, every observation contributes
10, - 0, 1/1 x, -6 1. the stronger statement maxl to the estimation of a, through the function (recall
< I n ii,. - a, -j2 0 also holds, the estimator a,, discussed following Proposition

We have seen that 0 can be estimated because 2) In the presence of measurement error, it is no
when a, is close to 0, then Y, consists mostly of longer possible to write a, as a function of the
the contribution from the unknown source. The observations and the stru.tural parameter (,Ae no
rate at which Y* converges to 8 depends on how longer see the true value of the observation) -lence
fast mini < j < na, approaches 0. which in turn in effect only finitely many observations (I vector
depends on the behavior of G near 0 In fact, observation or p scalar observations) contribute to
extreme value theory provides an asymptotic dis- the estimation of a,. so consistent estimation is
tribution for Y*' impossible.

Estimating tle structural parameter is muchProposition 3 Suppose that support (a) = [0,c], harder, as well It is still helpful to think of the
< <. problem in terms of estimating the endpoint of the

Suppose also that G(a) = Ka on0 < a .K /. line segment between the known x and the un-
Then known 0. When observations are made with mca.

nn ( I Y ysurement error, however, they appear as a 'cloud'im P\ I Y - )_ t( / 0 if y <0 of points about the line segment rather than being
confined to the segment itself. The estimator Y,*

{p ( 19 0defined in the previous section, then, will eventu.
ally overshoot 0 if the cloud extends far enough:
formally, Y.* converges to a support boundary of

The key fact in the proof of Proposition 3 is as the distribution of Y, rather than to 0. the support
follows: given independent observations from G, boundary of the distributioi of ji. If one were toboundaryextremedivalueuitheory dictates wethat
al .... , a.. extreme value theory dictates that assume additive errors for the observations given
P((nK)/$ mm a, < a) -'I(a) in terms of amounts, S, (or more appropriately for

,, .some transformation of S), the method of decon-
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volution may be used, in effect, to account for the vement properties Let Y be a p-dimensional Di-
measuremen, error Such an approach is capable richlet random vector with p-dimensional parame-
of estimating 0 consistently. Unfortunately, con- ter vector. 8 (see below). Any permutation of Y is
vergence rates of nonparametnc deconvolution Diichlet with parameter equal to the correspond-
es'limators are inherently very slow. Carroll and ing permutation of 8 Also, suppose Z is an
Hall 131 have shown for a large class of distribu- amalgamation over some partition, A = {a, .,
tons that in the case of normal error, no decon- a, }, of the coordinates of Y - in other words,
volution estimator can achieve a rate higher than a
factor of (log n)'. It is possible, however, that a Z YY ..... F_ Y,
higher rate may obtain for distributions confined , jaa -
to a bounded support. Also, it is known that with q<p. Then Z is Diichlet with parameter
certain functionals of deconvolution estimators equal to the corresponding amalgamation of 8.
converge significantly faster than the estimators These properties will allow us to combine and
themselves, and it is not unreasonable to expect permute coordinates of observations in order to
that an estimator of 0 could be one of them improve estimates without changing the underly-
Further research is necessary to investigate these ing model for estimation, see below. Campbell
possibilities and Mosimaun [111 provide a basic summary of

these and other properties of the Diichlet distri.
bition

A PARAMETRiC MODEL In general, the Dincilet density has the form

In order to produce estimators which achieve fo( ,8) = I
(

A) I
reasonable rates of convergence for moderate sam- M

ple sizes, it appears that parametric models are q F(8)
required for both G and the measurement error. p
The discussion in the previous section indicates where A P

that any reasonable model for time variation must w -1
satisfy condition (9). In keeping with the spirit of It follows that the first two moments of a
maximum generality, we will model for propor- Dirchlet random variable, Y. with distribution
tional observations, which suggests that we utilize fo( y 18) are:
distributions inherently appropriate for propor-
tional data. (10)

With these considerations in mind, we have E[ p) & (10)

chosen to model both time variation and measure- M=(A - 8,) ,,(l - t,)
ment error with the Dirichlet distribution. A gen. + 1) (11)
eralization of the Beta distribution, the Diichlet
distbution is especially well suited to modeling In general, the kth moment of Y is
proportional vectors created by dividing amounts A-i
observations by their sum. Such vectors are ex- I' (8, + m)
actly Dirichlet-distributed whenever amounts are E[ J - -0 (12)
independent of each other and the proportions l1 (A + ni)
which result from dividing the amounts by their -o
sum arc independent of the sum, whenever Notice alto that the coefficient of variation of
amounts are independent gamma random varia. N is

bles with common scale, and in certain cases when

amounts are positively correlated, the vector of /T 1-.T)
amounts divided by sum is Dirichlet. In addition, CV[ Y- + (13)
Dinchlet random variables satisfy some very con-
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We will model the measurement error process E[U] = E[E[U I V]], we may write for each coor-
by assuming that the conditional distribution of Y dinate j, j = 1. p:
given a has a Dirichlet distribution with mean =E[Z,,]=I
ax + (1 - a)0 and scale independent of a. There- it j
fore, assume that Y is Dinchlet with parameter A((I-a-)0 )
6, = A[a,(x, - 0,) + 0 1 for some constant A > 0 E A
(note that V, 181 = a'x + (1 - a,)O y, and that
F-I,/= A for each t) Now, the marginal distribu- = 0,E[1 - a,]

tion of Y, is obtained by integrating fo over the O,\
distribution of a, which we hypothesize to be the = (15)
Beta(hii,X,) = Dirichlet(APX 2) distrbution. In
other words, the density of the marginal distribu- Similarly,

tion of y has the form: i 2, = EI Z"]

= (AOE [(I - a,)' ] + 0,(I - 2x,)E[l - a,]

f(.) = fo( .I a) (?+x( -X))(A+ 1})

xaA-'(1 -a)Sii-da (14) 1 ('A- X(X + 1) ,(1 -

A +I A(A +1) A

wlicref0(j; Ia) =fo(yIA[a(x-0)+ 0]) Eq (14) +xj(l -x,) (16)
corresponds to taking an average of the densities
)o at j; given each possible value of a. weighted , E z,]
by the probability of a

In the development which follows, we will be 1 A
2
.P.]X(X + 1)(N + 2)

using the quantity I - a rather than a From the = (A + 1)(A+2) A(A + I)(A + 2)
permutation property mentioned above, it is clear
that (1- a) has a Beta(X2,Xt) distnbution. Let- 3A(I - 2x,),?.(X + 1)
tmg \ =\2 and A'=-X+X 2 , we may .para- A(A+I)
meterize the beta parameters from (X,h 2) to 13((l- x)(A -2) +2] Oh
(X,A). Certain functions of the source contribu- +
tion parameters are of at least as much interest as A

the parameters themselves: for example, h/A = (17)
Ell - a) and [X(A - 3)I/1A2(A + 1)) = Vardl - +.2 V,(2x, - 3x, 4 1) (17)
a] - Varqa]. From now on we will refer to A as the
error parameter and (3,A) as the source contri- Method cf moments estimators are formed by
button parameters. substituting ie sample moments,

Given p > 3, all of the parameters of this model I I
are identifiable from its moments (of order 3 and A, I (1Y, X') (18)
less). In other words, these moments completely
determine A, X, A, and 0. Therefore, method of for ni, in eqs. (15)-(17) and solvng for the
moments estimators for the parameters are .on- parameters of interest. As the moments equations
sistent. The moments equations may be developed overdeternine the parameters, however, moments
as follows. Let Yj be an observation from eq. (14), estimators are not unique. In the following sec-
where 8, is as defined above. Recall that Z, = Y tions we will develop several different estimators,
- x and -. x - 0. Using eqs. (10), (12), and the examine their performance under the model in a
fact that, for any random variables U and V, simulation study, and test them on a famous
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(a): A 10 formed for each of three pairs of source contnbu-
o tion parameters, (X,A}. (i) {4,5}, (n) (2,4), and

o (iii) (1,5). Recalling that Ell - a] = 1 - Era,
0 0 0 /A (see eq 10) and noting that

o o o . E[Y,] = (E[,]l)x + (ElI -,,)8
o ol (04,05) Oo o

S ° o° 0 
%o  

o it is clear that (i) represents a very favorable
o estimation scenario - one in which observationso° o oo oo ®  

° otend to be close to the unknown source profile, 0

otn, o Similarly, (i) and (ii) represent increasingly less
90 favorable scenarios.

In addition, each simulation descabed above
Ooo 01 02 os 04 0 0 o 7 was performed at two values of A- A=10 andCoord 4 A = 100. Fig la and b display plots of data simu-

(bJ: A = 100 lated under (i) for the two values of A. Examma-

tion of the plots and review of eq. (13) makes it
clear that A - 100 represents middling measure-
ment error while A - 10 produces very severe er-

0 0% roe.

0 As a measure of performance, median and worst
90th-percentile distance of each estimate from its
true value are given

Estimation of error scale, A

oo o 02 03 04 05 06 07 Although A, the error scale parameter, is in
coord 4 effect a nuisance parameter, its estimation is im-

Fig I Dinchlet mixture data Observatioas are generated from portant because estimates of source contributio
model (14) ith parameters A -(2. 2)' and 0- (0 005, 01 ,
02,04.0251, x-(02.02.02.02.02.0) Contrast of case parameters, X and A, and the location parameter,
(a). I = 10.,,th case (b). A - 100, ilustrates role of A parame. 0, depend directly upon A. Also, since severity of
tcr 5th data component is plotted against 4th measurement error varies inversely with A. that

parameter is itself of measure of how well we may
expect to estimate the parameters of interest.

simulated source apportionment data set. Compu- It happens that each pairwise combination of
tation of estimates and error measures, as well as observation coordinates - say. (jk) - produces
generation of 'random' observations, were per- an estinmate A,2 , of A. Define for each coordinate j.
formed on an AST PC with a 286 processor using j - p:
the GAUSS system, version 2 0. At,= (I - 2x,)?i, + x,(I - x,) (19)

Description of the simulation 8,- (A + l)mn2, -. 4, (20)

Simulations each consisted of 100 runs at 100 C,- (A + 1)(A + 2)i,, - (3(1 - 2x,)B
observations per run generated from the model [ -
(14). The sample size of 100 was chosen to be + 2Jj3(x,( I 2)+2
comparable to that of a typical source apportion- + 2x,(2x,- 3x, + 1)) (21)
ment data set. Observations were six-dimensional
with x-(0.2, 0.2, 0.2. 0.2, 0.2, 0)' and 0-(0, where nil,, a2r,, and in, are as defined in eqs.
0.05, 0.1, 0.2, 0.4, 0.25)'. A simulation was per. (15)-(17). It is straightforward, if algebraically
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painful, to verify that for any pair of coordinates of the observations provides information sufficient
{j,k}, to estimate (X, A). In particular, it happens that

m2A ,- ,A, for any coordinate j,
,112 - -1 (22) Ani2,A(X -1)Int - m 2 m B A (23)

The estimator A., results by substituting the X(A+1)
sample moments, M5, (see eq (18)), into eq (22). AmlB,(X + 2)A
However, the first-order bias and variance of A,, (A + 2)(24)
increase with I0,-x.I and I Ok x-x. From a
heuristic viewpoint, one would expect the best Clearly we could substitute the sample esti-
estimates to result from coordinates for which mates (18) in (23), (24), and the definition of B
0 = x. - in other words, for which the only and C, and then solve the above system of equa-
variation is due to measurement error Since E[Y, tions for X and A, for any j. Reasoning that some
- x.] = c(01- x,) (c constant over i and j), the coordinates may produce more reliable estimates
M, should contain information about the relative than others, however, we may write
sizes of the quantities 10, - x, With these things . ( + t) P

()
in mrnd, we examined four estimates of A, each a E wvBj =., (25)
weighted average of the pairwise estimates with j-t A ± =1
weghts iv, on pair (j,k) as follows:
DEST Vt',k all equal - i.e., unweighted tC= A(--+ 2) (26)

average of pairwise estimates - . t) -

DAWEST. 1 t for any system of weights, it. We will createI , I + I M I, estimates based on the solution of eqs (25) and
DMWEST: st), = (26) for X and A, using several choices of weights

I f and sample-based substitutions.
DBEST nt)k = t for pair j,k such that I Mil, In order to identify coordirntes which should

MIkfi I are ninimum (in produce more reliable information than others,
other words, such that one note that since VarY, - xj - (Varla,j)(0, -x))
coordinate of the pair has + [(?I+ X)(1 "1 )t/(A+l)
the smallest value of I Mi, 1, 1).
I- L..., p, and the other ( Var[a,]
has the second smallest) (C - x (E[I -a,]) 2

w, - 0 otherwise
A summary of the simulation results is given in (m, + x,)(t -nti, -x')

Table 1. DMWEST and DBEST clearly outper- + 111,(A + I)
form DEIST and DAWEST. It is harder to dis-
tinguish between DMWEST and DBEST; at- (27)
though DBFST generally outperforms DMWEST As the first term is constant and exactly what
slightly in terms of standard deviation and 90% would result if there were no measurement error.
distance, DMWEST tends to have a smaller 50% the coordinate-wise Cs measure how much varia-
deviation from the true parameter value. In both tion is due to measurement error relative to each
cases, reasonable estimates seem to be produced other. Theoretically, the most reliable information
regardless of model parameterization. should be obtained from the coordinates having

Estutation of source contribution parameters the highest proportion of its variation due to source
contribution randomness - in other words. the

In this section we develop estimators first of coordinates with the lowest CVs. One approach
(X, A ) and then of 0. Given A. each coordinate might be to calculate source contribution esti-



N Origir=l Rescamet Ppe r 179

TABLE I Given p variate observations Y,. i ..... n.
Esuimation of mes urei-u rre por pvmor the estimators ve examined are as follows:
Mcdun =id 90% absoute doiatio of esti astd wr parair
ia from A (I) AMAL-M\:

Pammaer ,tadun dn ne from Sa -10 (a) For each Y., create R, as follows:
value Ra - Y_.. %%here the sample CV of Z. is
x A DEST DAWEST DMWEST DBESr minimum among all coordinates of Y:
4 5 0.902 OSS2 0.302 0.029 R,2= F_ ),. %here P:-{j such that

2 4 171 1.74 121 1.a CP

1 5 .6 2.14 1.93 199 . _

90%disia.efromn.-10 R, - F, ),. %there .V:= (j such that

DST DAWSTr DMWEST DBEST jeN

4 5 3.78 319 L9S 2.30 M,, < 0).
2 4 104 7SO 60 2.59 (if N is empty, let N - the coordinate of
I 5 124 12.7 10 700 the second least sample CV and delete

Medan d =ancr from A - 100 that coordinate from P. perform analo-

DEST DAWEST DMWEST DBEST gous operation if P is empty).

4 5 12.1 10.6 853 565 (b) Create the analogous amalgamation of x.

2 4 200 136 828 962 U.
1 5 143 129 940 107 (c) Substitute the DMWEST estimator of A

90% dwsianre from A-100 for A in eqs. (25) and (26). and the defim-

DEST DAWESr D.MWEST DBET tions of B and C
(d) Substitute the sample expectations of (R,,4 5 437 374 211l 207/ 1-.

2 4 917 628 262 5.3 - u,). - L (R.,-u)). for imq, in (25).
I 5 695 571 263 247 n-_

(26) and the dtfinitions of B, and C,.
(e) Solve (25) and (26) for A and A using

w=(1/3. 1/3. 1/3). resulting in estima-
mates base. nly on the coordinate with the lo%%est tors A and A. respectively.
sample CV. However, examination of eq. (27)
suggests an approach which includes all of the (2) AMAL-BP: Same as AMAL-MW. except sub-
data The second term of the sum tends to de- stitute DBEST for DMWEST in step (c)
crease as tinm increases - in other words, as
the distance bet,,een x, and 0, increases. As the
dilmensbon of the observation increases, the I oni, I (3) BCV-MV:
values will tend to decrease. However. amalgamat- (a) Substitute M,, for in,, in eqs. (25) and
tug the observations to a few favorable dimensions (26) and the definitions of B and C.
can provide several coordinates with large values (b) Substitute the DMWEST estimator of A
of jinll while retaining a correct parametric for A in eqs. (25) and (26) and the defini-
form We chose to amalgamate to thr,-e coordi- tions of B, and C,.

nates, the smallest number which allows identifi- (c) Solve eqs (25) and (26) for A and A using
cation of the entire parameter spaec and chose w, = (1 if coordinate j has least sample
the particular amalgamation for which the coordi- CV. O otherwise), resulting in estimators A
nate with the lowest sample CV is retained and and A. respectively
the others are added in such a way as to maximize
the resulting sample Int,)I values Better amalga- (4) BCV-BP. Same as BCV-MW. except sub-
mations might well exist stitute DBEST for DMWEST in step (b)
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TABLE 2 Primary results of the simulation study - pcr~

Estimation of s:rcc € m ,,woe p w formanc of the estimators as measured by median

%ftofzm aW Qn abslutel;+ : dc or e, di~tcs #tom £1o and 90% deviation from true values - are sum.
marized in Table 2. For many scenarios the per-.1-10 formance of the estimators was virtually indis-

Pmmctr Mlcd: d .. if- froo Elol tinguishable. although relative performance of the
nIx B3CV estimators to the AMAL estimators seemed

T7 A mal- Ama- BCV OC,- to improle as the estimation scenario %.orsened.
OW BP 13W BP All of the functions estimated Eta] reasonably

4 5 .19s 0.199 0.220 0241 well in the case . 100. with only slight decreases
2 4 0..46 0.304 O.470 0479
1 5 0676 0.663 0468 0311 in performance (especially from the BCV estima-

tors) as the parameterization favorability de-
90% dtaszex fom EI. creased. Both estimators performed badly in the
Areal. Aml- BCV- BCY-
MW BP MW BP

4 5 0346 094 0.745 0.953
2 4 2.06 1.46 0905 0742 TABLE 3
I S 1.27 123 1.25 1.17

1-100 Esomatn of tocatbon paraner
.1-100

Euchdmi daitance to atm .tcd localton from, 0
Paramcmt Median datace from E(o]

'al-.1-t0
A .1 A a- A eal-. BC ' BCV- P M d f

MW HP MW BP value (0. 0 05.0.1.0 2.0 4.0.25)

4 5 0.041 0.041 0031 0.030 A A At. Amal- BCV- BCV-
2 4 0.070 0069 0091 00S9 X A AA P

! s 0105 0111 006S 0061
4 5 007S 0076 0090 0094

90% desance from EI. 2 4 0224 0217 019 0197
Amat. A]a- BCV. BCV- 1 5 0312 0317 0314 0294
MW BP MW BP 90% distanc" from (0. 0 05. 0 1. 0 2.0 4.0 25)

4 $ 0169 0194 0117 0121 Amea Amal- BCV- BCV-
2 4 0264 0213 0400 0280 MW BP MW RP
1 5 0350 0321 0162 0162

4 5 0.150 0120 0255 0432
Parameicr salue 29 Inmmcd mcan of Elol catmaics 2 4 0526 0589 0 354 0512

1 --S EW Amat. Amat. BCV- ICV- 1 5 0440 0556 O0 115

MW BP MW BP S-I00

4 5 10 02 0070 0025 -0047 -0116 Paramcier Mcdan dlstancc from
4 5 100 02 01393 0t93 )221 0221 saluc (0.005.01.02.04.025)
2 4 30 0-5 -0066 0101 0105 0188 - A
2 4 100 05 051 0523 0.564 0551 k A.]. Ar. BCV- MCV-

I5 t0 08 0347 0236 0536 0459 MW BP MW OP
1 5 100 08 0772 0833 0789 0790 4 5 0020 0020 0020 0020

2 4 0057 0057 0076 0082
- 1 5 0195 0168 0337 0136

In each case, having produced estimators A and
of X and A, we estimate Ea] by 90%distanc from (0, 005.01.02.0 4.025)

Ama- Amat. BCV- BCV.
MW BP MW BP

and a by 4 5 0113 0132 0000 0080

B=MA/A+x 2 4 0346 0333 0410 0430

where I 1 ( Al lp' 1 5 104 172 0.598 0614
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case.%= 10; indeed, only in the most faxorable(i) sporadic bias. In fact. at least one estimator had

scenario did estimates approach being passable. 2% trimmed mean bias less than 0.02 in each
ghich is not surprising given the severity of the parameter scenario. Because of their ratio form,
error, the/#o estimators %ill be biased for most parame-

For each estimator it is useful to know not only ter scenarios. but this bias does not appear to be
bow much Ft vanes about EtaJ but also whether serious %hen measurement error is not too severe.
A. tends to overestimate or underestimate Eta]. Median and 90% distance of estimated source
Perhaps the most common measure of the tend- profiles from the true source profile, 0. are given
ency to overestimate or underestimate is bias in Table 3. Although these results should conform
(E[.] - Elafl. Ahich we could estimate by tak- generally to results for estimating Ela]. it is inter-
ing the average of the A. values generated in each esting to note that the AMAL estimators per-
100-replication simulation of a parameter scenano formed relatively better than one Aould expect
and subtracting the corresponding Elal values, from that criterion alone. All estimators reflect the
The sample averages of the i. estimates turned increasing difficulty of estimation with worsening
out to be highly unstable. hogever, invariably of parameter scenario.
because of one or two outlandish observations.
Instead. we give in Table 2 the 2% trimmed mean Apphcation to sinulated source apportionment data
of the ji values - the average of the 96 central
values - for each estimator and parameter Curne et al. 1141 describe the generation of
scenario. (In other words, we discarded the two three simulated data sets which were made asaila-
greatest and the tgo least estimates and took the ble to participants of the Mathematical and Em-
average of the remaimng values.) For % = 10, the pircal Receptor Models Workshop (Quail Roost
estimators all hase a severe tendency to under- 11) Each was constructed from reported source
estimate Eta]. For . = 100. on the other hand. the profiles and real meteorological data from St.
estimators exhibited only mild and somewhat Louis over a 40-day period in 1976. We sum-

TABLE 4

Eistimaton of El.l
Quad Roost It Data Set I

Estimaior Kinown sourc

Road Steel Coal Wood

Truesaluo. El.) 0172 0002 0063 0t02
Estimate ± standard deviation

AMAL-MW 0 t43 ± 0041 0016 ±0017 0042 ± 0026 0 314 ± 711
AMAL-BP 0 143 ± 0046 0017 ±0026 0036± 0087 0 556 ± 33.9
BCV-MW 0.163±0372 0095±0073 0128±0324 0238± 0069
BCV-BP 0163±0314 0095±0073 0122±0430 0237± 0066

95% Confidence mtercal
AtAL.MW (0084.0 248) (0008.0031) (0 023.0442) (0, t)
AMAL-BP (0085,0252) (0009,0 351) (0011.0122) (0 179,1)
BCV.MW (0,0 245) (0082.0 374) (0 034.0 216) (0 t44, 0 426)
BCV-BP (0 0V. v 3! 6) (0,0115) (0. 0 214) (0 141.0 402)

Distance between estimated tocason, tIme 0
AMAL-MW 0034 0009 0012 0262
AMAL.BP 0034 0008 0013 0886
BCV.MW 0025 0034 0032 0146
BCV.BP 0025 0034 0 030 0 1 44
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Quail foost the other two cases. The algorithm does, in fact,
appear to estimate the average composite profile
as the location parameter, 0. Fig. 2 may cast some
light on the behavior of the estimates. The road
parameter is on the 'edge' of and in line with the

o o bulk of the data, almost as if it %%ere one of two
o contributing sources, Steel and coal, in the center
o 0~,, of the data, appear to be 'in betsseen' other
0 °Oo° osources, and neither is in line with the data. One

o *omaa would not expect to estimate either one as well as

road. Wood, finally, is extremely far from the
o 0? .n.0.. O observed data, which would certainly be expected

oool 02 03 04 0.5 0 7 08 09 1.

coro' to cause problems. Estimates of 'A' also shed some
Fig. 2 Quai roost data. Ambtnent' proportsonal data are light on the situation; for road and steel, all esti-
represented by crcles. ih silicon component plotted against mates %%ere large and stable (> 1000 in the case of
a cairbon, corponeni Squaires represent corresponding wiatom
for proportional protles or ko sn sonr resp road). In the case of wood. especially, estimates

were unstable, perhaps an indication that model
assumptions are in severe violation (Recall that

marize here the performance of our moments the simulated errors are additive and Gaussian
estimators on the first of the data sets, which was rather than from our Dmchlet model.) It is reas-
based on eight source profiles and observations surng to notice that bootstrap standard errors
contaminated by normal error. For each of the and intervals identify the poor estimators as being
source profiles coal, road. steel, and wood. %%e unreliable.
fixed one profile as 'known' and attempted to In addition, %Ne attempted to estimate tradi-
estimate its influence with respect to the rest. tional CIB parameters using the prncples out-
which were aggregated as descnbed below and lined tn the section on the CMB model, above.
treated as a single unknown. Since the 'unknown' The most simple transformation to the CMB model
is really known, we can test how well our method- may be earned out by substituting observed am-
ology estimates it. Eighteen chemical species were bient mass profiles, S,, for s, and an estimated
used to define proportions - all of the species source profile, 0, for 0 above and solving the
from which profiles were constructed in ref. 14 appropriate equations When the dimension of the
with the exception of As and CC (contemporary observations is greater than the number of sources,
carbon) as is the case here, one may select a subset of the

Results a., summanzed in Table 4. Standard eqs (5) and (6) to determine the parameters In an
errors and confidence intervals were determined attempt to base as many equations on 'known'
by bootstrap methods (1000 resampling repli- data as possible, we chose to use all of the eqs (5)
cations) desenbed by Efron [15,16] Actual values and all of the eqs (6) based on the 'known' source
of source contnbutions and, therefore, of the a, profile. Only one equation remained to identify
values are given in ref 14; E[ja] is taken to be the the parameters, we chose the equation from (6)
sample average of the a, values. 0 is obviously based on the components of the unknown profile
not, in fact, a constant parameter However, using for which observed CV was smallest and second-
actual source contributions, one may calculate a smallest Using this method, we were able to
composite source profile for each day The 'actual estimate the total source contributions for 'road'
value' of 0 is taken to be the average of the daily quite adequately, indeed, with one exception, we
composite profiles. were able to estimate contributions to within a

Estimation of E[na ranged from excellent in factor of 2 whenever road accounted for more
the best case ('road') to poor in the worst case than 0.6% of the total mass. (The exception was
('wood'), with reasonable estimates resulting in within a factor of 3, and estimated values were
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generally much closer to true values than a factor the individual parameters X and A if observations
of 2 when road accounted for more than 5% of do not satisfy eq. (14) is unclear. For the Quail
total mass.) Estimation of total source contribu- Roost data, the magnitudes of best-CV estimates
tions for the other profiles was much less success- of X and A appeared reasonable, but amalgama-
ful. The fact that the composite of the remaining tion estimators seemed to underestimate the mag-
sources behaved very much like a single, second nitude quite severely. Research into this phenome-
source in the case of road whereas it did not in the non is necessary. Study of sensitivity to model
other cases accounts for much of this effect. How- assumptions is needed, in general. Modifications
ever, estimation of total source contributions in of the model may be warranted - for example,
this manner will be difficult whenever measure- allowing A to vary either with time or with chem-
ment error is severe enough to push a sizeable ical species. Alternat. to moments estimates,
number of the observations 'beyond' the profiles such as maximum likelihood estimates, should be
x and 0 in the sense descnbed in the section on available given enough computing poer. How-
nonparametric models with measurement error, ever, computation of maximum likelihood estima-
abose. tos requires accurate estimators as starting values,

so the method of moments estimators should be
useful even if maximum likelihood estimators

CONCLUSION prove to be superior. Finally, other parametric
models should be investigated.

Limitations of standard CMB models led us to The question of how best to transform from the
introduce SASU models - source apportionment SASU model to the sta..dard CMB model when
with one source unknown In this paper, %%e have enough data are available to do so remains open.
considered the case of one source known and one One may always substitute observed ambient air
source unknown. Inherent to this situation are at mass profiles, S,, for s, and an estimated source
least two interesting statistical problems estima- profile, 0, for 0. However, the presence of mea-
tion of a structural parameter in the presence of surement error guarantees that the resulting esti-
infinitely many incidental parameters and estima- mates will not be consistent. We will continue to
tion of a parameter which is not, in general, iden- investigate this question.
tifiable. The latter problem is easily addressed in A complete approach to the SASU problem
the case of no measurement error by requiing will eventually require investigation of numerous
that the unknown source is a support boundary complications to the model, including the case
(which is eventually attained) of the observation when the xk values are measured with error and
distrbution In the case of measurement error, it the case when observations are correlated. One
would appear that deconvolution methods are re- might like to include observable covariates such as
qutred in order to identify the unknown source in weather or seasonal variables in a reasonable
a completely nonparametrc model. We have be- model. Estimation in the case of more than one
gun research in this area, but more work is needed known source presents an interesting problem as
before making recommendations, well. While some analog of eq. (9) is probably

Parametric models may present a reasonable, necessary in order to identify the problem [a Di-
practical alternative to the nonparametric ap- nchlet model imposes eq (9) naturally], the gco-
proach The Dinchlet model examined appears metric nature of the problem is somewhat differ-
promising, as an added benefit, it is easily gener- cnt than in the one-source-known case Research
alizable to the ease when there is more than one into these issues is underway.
known source A number of issues need to be When the unknown 'source' is actually an ag-
considered, however Given model (14), the source gregate of several unknown sources, then it is
contribution parameters A and A not only iden- questionable whether one should model its profile
tify E[a] but all higher moments and, indeed, the 0 as fixed Instead, one might model 0l, the un-
exact shape of the distribution of a. The role of known profile at time t, as a stochastic process,
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either stationary or with a time trend depending 5 GE. Gordon. Receptor models. Environnmental Science and
upon the nature of the unknown sources. In some Technoloy. 22 (19S) 1132-1142
situations it would be sensible to model 0, as 6 R.C. Henry. C.W. Lmsis, P K ilople and FLY. Williamson.

Revtes of receptor model fundamentals, Atmospheric En-
depending on a covariate. vumnew 15 (1984) 150-1515

7 J Neyman and EL Scott. Consistent estimates basod on
partiatly consistent observations. enreria 16 (1948)

ACKNOWLEDGE'iIEN'1 1-32.
8 BG( Lindsay. The geometry of mixture likelihoods A

general theory. The Annals of Statrr, 11 (1983a) S6-94
David Ruppert was partially supported by NSF 9 B G3. Lindsay. The geometry of miture likelihood 11 The

Grant DMS-8800294. Both authors were sup- apomnniat family, The Annals of Statsirtcs. 11 (1993b)
parted by the Army Research Office througb the 783-792.
Mathematical Sciences Institute at Cornell. W~e 10 JIM. Begun. WJ flal, W. Muang and J.A Weltnee. Infor-

than RayMerill or itroucin oneof s (DR.) motion and asymptotic effiniency in paramicinc-noniparat-
thak Ry M milforintoduingoneof s(DR.) menc models, The Annals ofStatsrcs. 11 (19S3) 432-452

to this area of research and suggesting the possi- I11 G Campbell and J E. Mosimann. lDinchiet covanate mod-
bility of indirectly estimating the unknown source. els for random proportions, in R MI Hiberger (Editor).
This work includes material from the Ph D. Dis- Comiputer Science and Statistics Proceedings of the 19thi

sertatton of K B.-R. S~rnisinni on the Interface, ASA, Alexandna., VA. 1993.
pp. 93-101

12 NfiR Leadbetter. G3 Lindigren and HI Rootien, Ex'renies
and Related Properties aof Random Sequences and Processes.

REFERENCES Springer-Verlag. Nes Yoir. 1983
13 Ri. Carroll and P Hall. Optimal rates of convergence for

I B Aldershof and D Ruppert. A statistiral analysis ot deonvmolsing a density Josnrnal of the American Statistical
woodstove PAHl emissions and source apportionment of Aotawiin. 83 (1988) 1 i54-1186
ambient air samples Unpublishod report prepared for EPA. 14 LA Camne. R WV Gerlach. C W Lessis W D Balfour. J A
Research Triangle Park. NC. 1987 Cooper. S L Daitnee. P T De Cesar. G E Gordon. S L

2 G S Kowalczyk. C.F Chioqsette and GE. Gordon. Chem Harsler. P K lioplie. Li Shah. G D Thuston and 11.
teat element baancs and identification of air pollution Wiltinusson. Interlaboratory companison of source appor-
soures in Washington, D C.. Atmospheric Encironment. 12 tionment procedures results for simulated data sets. Aims-
(1978) 1143-1153 spheric E-niem, 18 (1984) 1517-1537

3 J Kiefer and I lfotosse Consistency of the maximum 15 B Efron. Ther JacAknmfe, the Bootstrap and Oihcr Resam-
likelihood estimator in the presence of infinitely many plstg Plonw, Society for Industrial and Applied Matbe-
indental parameters. The Aninals of Mathentivicol Statis- mnattes Philadelphia. PA. 1982
tics. 27 (1956) 887-906 16 B Efron. Better bootstrap confidence intervals. Jouriial of

4 1JA Cooper and I(G Watson. Receptor oniented methods the Americant Stattical Associatison. 82 (1987) 171-185
sftair particnlate source apportionment, Jornsl of the Air
Pollution Control Association. 30 (1980) 1116-1125



U Dssszon 185

Ch-motrt- and lteflhgen Laboratory Systens, 10 (1991Y 1S5-187
Elwser SMene Pubhishes B.V.. Amsterdm

Comments on "Source apportionment with one
source unknown" by K. Bandeen-Roche

and D. Ruppert

P.K. Hopke * and M.D. Cheng

Department of Chemssyt Clarkson Universay, Potsdam, NY 13699-5810 (U S A)

An initial remark we would like to make is to then falls into the multivariate methods category
note the interest in the receptor modeling problem as outlined by Cooper and Watson [1] As such, it
by statisticians. This paper along with the one seems that this new method should be compared
elsewhere in these proceedings by L. Gleser pro- with other methods that attempt to deduce source
side some of the first efforts to explore the recep- profiles including absolute principal components
tor modeling problem as a statistical problem. We analysis [2], target transformation factor analysis
think that there are a number of interesting aspects (TTFA) [3] and SAFER [41
to this particular form of the mixture resolution The model presented in this paper suffers from
problem because of the lack of constancy in the the need for a basic assumption that the 'un-
source profiles and the errors in the sampling and known' source is constant in composition How-
analyses that make receptor modeling different ever, if the 'unknown' source is really a combina-
from mixture resolution using spectrometric data tion of sources, then it is unlikely that this as-
Thus we welcome more statistical inputs and in- sumption will be valid In a complex, urban
sights into the exploration of sources of airborne airshed, wind direction shifts can drastically alter
pollutants. the number and types of sources [5) and even at

The next aspect of this paper that needs to be more remote sites, there can be highly significant
discussed is that of facilitated communication. It seasonal variations in composition of emissions
is clear from the paper that receptor modelers from various sources so that the applicability and
have not defined their terminology sufficiently utility of this approach relative to the traditional
clearly such that people entering the field can multivariate approaches is not at all clear.
immediately adopt our jargon. The paper suggests Before getting into other more d'taled coin-
that the problem they are solving is that of the ments on the source apportionment with one
chemical mass balance (CMB) However, as this source unknown (SASU) methods, we would like
term is commonly used within the receptor model- to raise some other .ssues regarding communica-
ing community, it refers to the resolution of a tions. This paper is written by statisticians for
single sample into its components based on a set statisticians and has therefore been written in 'sta-
of source profiles that are known a priori In the tistics'. However, for us armchair statisticians, it
approach outlined here, a number of samples are becomes very difficult to read and digest because
used to deduce the profile of the 'unknown' source we first have to translate it from symbolic nota-
when one or more profiles are known and then tions into terms we can follow. We realize that this
obtain the mass contributions of the known paper takes advantage of commonly (for the sta-
sources This method requiring multiple samples tistics literature) used symbols such as c, V, and
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[0. 11 We would suspect that most readers of this X-ray fluoresence, we know that the count data
journal are not going to be able to easily follow on whtch the concentrations are determined have
the arguments because they get lost in the sym- a Poisson distribution and the additivity of the
bols, and "e suggest that although it is cumber- uncertainties can be explicitly calculated. Thus, it
some to do so, these symbols should generally be is certainly possible that if the sample does not
avoided in papers that are wntten for non-statisti- contain the analyte of interest, a measured value
cians to read. less than zero is a valid result. Too many people

We also %ould urge that theorems, propositions will then set the value to zero because of their
and the likes be relegated to Appendices rather misunderstanding of the effects of the measure-
than breaking the flow of the reasoning in the ment ,rror. Thtus, some of the starting prenmses of
text. We recognize the heresy of this proposal, but this work seem to be in error.
offer it notwithstanding in order to improve com- In the non-parametric model, they suggest that
municattons to the non-statistician in the limt of sufficiently large numbers of sam-

There are a number of other aspects of this ples being taken and analyzed, there will be one
paper that we would like to discuss The authors that will be composed almost entirely of the species
suggest the CMB model cannot deal with time contributed by the 'unknown' source This as-
varying source contnbutions. CMB analysis does sumption again raises the problem of the con-
not deal with time variation at all because it is stancy of the mixture of unknown sources that
performed on only one sample. Time variations in constitute the 'unknown' source Although the
source contrbutions ,.ould only be found by per- wood stove would not be burned in the summer,
forming a series of CMB analyses on a sequence there may be other sources that are on in the
of samples. Time variation in the source profiles is summer but not in the winter. The real situation is
normally not incorporated because multiple source not likely to be as simple as portrayed here.
samples are not often taken at the same time as It also appears that it is necessary to know the
the ambient samples However, only the financial probability distribution of the 'unknown' source
and access constraint that often plague field stud- contributions G(a). It has not yet been done for
ies preclude the incorporation of time variation of any source to the extent that the distribution of
the soarce profiles in the CMB calculations. An values is known Thus, at this time, this approach
alternative approach to incorporate systematic does not appear to provide practical help to the
time variations would be to use Kalman filtering receptor modeler particularly in light of the other
It would appear feasible to utilize this method to problems that arise when measurement error is
take such time variation into account. Although it introduced into the model.
has not yet been studied in the context of the One of the problems with the use of propor-
receptor modeling problem, the Kalman filter ap- tional data is that ultimately the results will need
pears to be a method worthy of further explora- to be back transformed into absolute concentra-
tion. tions (ptg/m 3) to be used by air quality managers.

There is a statement that the use of additive, It will be necessary to provide a method to give
Gaussian error structures may be a limitation to a such values with associated error bounds if the
CMB analysis because the observations should be method is to be applied to real air quality manage-
non-negative and may be constrained as when the ment problems
measurements are proportions summing to one In the parametric model studies, the stimulated
One of the continuing problems in air quality data data were assumed to have identical and constant
handling is that of the compulsion to left truncate errors for all chemical species from all of the
data Most of our chemical analytical methods sources The authors note this is unrealistic We
have demonstrably symmetric error bands on the would encourage further study with more realistic
results even if the errors are not truly Gaussian error structures so that any possible points at
For many airborne particle analyses based on which the analysis shows problems can be identi-
photon spectroscopy such as neutron activation or fied.
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Finally in the analysis of the Quail Roost I1 culty in reading and understanding the work that
data set, it is interesting that SASU was able to is being presented

estimate the STEEL source even though it was
well below the 'detection limits' as defined by

Curne et al. [6) It seems surprising that "WOOD"
was so poorly estimated as it could be found REFERENCES

relatively well using the other multivariate meth.
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Abstract
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A number of mathematica approa.hes that are urrently of mnterest in theorcwal combustion are briefly described These are 1)
activatzon energy asymptootcs - flame-sheets and hot-spots, (2) bifurwations and routo to chaos, (3) turbulent premixed flames -
fractals and renormahation, (4) reduced chermistry and rate-ratio asymptotics, (5) nonlinear tngh.frequency acoustics and
combustion

PROLOGUE complex kinetic systems to reduced sets involving
three or four reaction steps. Our discussion con-

With rare exceptions, combustion is fluid cludes in Section 5 with the interaction of high
mechiamcs with the addition of highly exothermic, frequency acoustic waves and a combustion field.
temperature-sensitise chemical reaction Progress Of particular interest is the fact that a small-am-
in combustion theory has therefore beeii closely plitude nonlinear periodic wavetram can accel-
linked to tools that have been developed to deal crate a temperature-sensitive reaction
with the reaction terms, and this is apparent in the
topics discussed here. Section t briefly describes a
successful asymptotic treatment based on the idea I ACTIVATION ENERGY ASYMPTOTICS - FLAIE-

of extreme sensitivity of the reaction rate to tem- SttEES AND ItOT-SPOTS
perature variations This can lead to flamesheet
models in which reaction is confined to thin layers, It is commonplace in combustion theory to
and this provides a powerful tool for examining adopt a simple one-step kinetic model char-
flame stability, the subject of Section 2. At high acterized by Arrhenmus kinetics For premixed
Reynolds numbers the role of chemistry is reduced flames this might have the form
to generating a hydrodynamic flame, a tempera-
ture and density discontinuity sepprating two in- mixture -e products

viscid flow fields (Section 3). More subtle aspects at a rate
of the chemical kinetics play a role in Section 4,
which describes a rational procedure for reducing f - DYe

-
"
l  (1.1)

0169-7439/91/$03 50 0 1991 - Elsevier Sre. P ihishers B V
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T e g. Fig 1. These flame-sheet structures are well
understood and the approach is a well established

.. .. -- -and proven tool
TT. ToT. A quite different class of problems involves

R.o_ Z F hot-spot formation and ignition Consider the fol-
lowing simple model for homogeneous thermal
ignition.

dT/dt - e
"-
'

T
, T(O) - To  (1.5)

Adopting the ansatz
Fig I Flame-sheet separating two reions of froen flew. This 1
is typical of the structure seen is ditusion flames Ill T- T(1 + 0 + ... ) (1.6)

the perturbation function 0 satisfies the initial-
where Y is the mixture fraction, T the tempera- value problem
ture; for diffusion flames, d,/di - e", 0(0) = 0 (1.7)
fuel + oxygen - products where 7 is a scaled time Thi has solution

at a rate 0 - -In(1 - r) (1.8)

Q = DXYe
- 0

'
r  

(1 2) valid for 0 < 7 < 1. Thermal runaway occurs at

where X (Y) is the oxygen (fuel) mass fraction 0 r = 1. In nonhomogeneous problems, runaway is
is a nondimensional activation energy or activa- confined to a small region called a hot-spot. A
tion temperature. well.known example occurs in a certain type of

Asymptotic treatments are possible in the limit deflagration-to-detonation transition [4] A weak
6 - so and have proven to be of great value in shock is generated by the accelerating flame, and
elucidating a wide range of combustion phenora- in the shocked gas a hot-spot forms and gives rise
ena 11-31 For some problems the asymptotics to an expanding shock which interacts with, and
lead to flame-sheets, thin regions in which there is reinforces, the lead shock (Fig. 2).
a balance between diffusion and reaction; beyond
the flame-sheet reaction is negligible. This comes
about by considering the distinguished limit

D.- oo, 0"oo, D-e ° /
', T- fixed (1.3)

This immediately leads to a partition of the flow.
field into regions where T< T* so that 2 - 0
(frozen chemistry), and regions where T> T* so
that Y --,0 or XY-o0 (equilibrium chemistry),
and again U -0 for the irreversible kinetics of
eqs. (1.1) and (1.2) *.

The thin reaction zone or flame-sheet is char-
acterized by

T- T* + 0(1/0) (1.4)

Fig 2 Itlot-spot formation and initiation of a shock in de.
In a speral but important iase, the plane deflagaodon, an flagraion-to-detonation transition (cartoon based on plate 5 of

unbounded region of eqnohbnum gas exmists where T- T*. ref 4)
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2 BIFURCATIONS AND ROUTES TO CHAOS

The constant density model for premixed flames
can take the form (see ref. 2, p. 25):

IT 11Y 1
T --- AT+ 2, --- = AY-2 (2.1)

with 12 given by eq. (1.1). Here Le is the Lewis
number and values of Le different front I can give

rise to Turing instabilities [8).
As noted in Section 1, in the linut 0 - oo

reaction is confined to a than flame sheet. Indeed,
"i _ for deflagrations that are nominally plane and

adiabatic, 2 behaves like a Dirac 6-function of
strength - e

-
6'1r2 where T* is the flame tem-

, -perature. It is then not difficult to construct a

Fig. 3 Pressure disibution at different times in an interior stationary solution (unchanging flame propa-
hot-spot. From ref 5 wih permission gation), whose linear stability can be explored

using a modal analysis If the flame-sheet dis-
placement is

Only recently have these hot-spots been Xf m - +Vldt 
+

e
Ce * 

y
'  

£- 0 (2.2)

analyzed for a compressible gas, and Fig. 3 shows where the unperturbed flame propagates to the
the early pressure rise for an interior hot-spot one left at the adiabatic flame speed, the stability
not next to a wall) [5]. Density changes are shown diagram Fig. 5 can be constructed (9].
in Fig. 4; the process is so rapid that no signifi- In the neighborhood of P long wavekngth
cant mass flux can occur, and these changes are disturbances grow very slowly and weak nonlin-
small (inertial confinement). Recent efforts have eanties can be incorporate,' into the analysis by
been concerned with the consequences of hot-spot means of a bifurcation analysis. In this way the
formation 16,71. Kuramoto-Sivashinsky equation can be derived

[10) for 0 - xf + tV.,t, and when corrugations in

the z direction are also admitted this is

ii
+  

(vO)
2 - -V - 4 v4 (2:.)

u-0i

- U .).iw.v • ewin

Fig. 4 Deni) distnbution at different .imes in an interior Fig 5 Stabilty boundanes in the wavenumber-scaled Lewas
hot-spot From rcf S s ith pernussin number plane
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Fig. 6. Numerical solution of the Kuramoto-Sivashisky equa-
tnon. From ref 2

The first term on the right is viscous-like with a
negative viscosity coefficient and is strongly de-
stabilizing; ,oe v 4 term stabilizes short waves.
Numerical simulations show that the flame-sheet
adopts an irregular, unsteady, cellular configura-
tion (Fig. 6). Physical flames in mixtures with "'M
Le < I can display similar behavior (Fig. 7) 1111
(see also ref. 1, p. 194).

Fig. 5 shows the stability boundaries for an
unbounded flame. If we consider flames that are
attached to burners, accounting for the heat flux
to the burner, the left stability boundary is mod-
ified (Fig. 8). If at the same time the burner
geometry restricts the wave number k to discrete Fig. 7 Cellular flames. courtesy of M, Gorman l1) An eptical

illusion con mnake ihese took like liquit drops on the underside
values, discrete points on this boundary are de- Iof a ae thesitote gon orpson toe nesof a plate with the %.'lute reports correspondinlg to contvex
fined, each of which is a potential bifurcation surfaces. In fact these are top mvis of the flame with ooncac
point from which can spring a nonplanar solution, or iuplike %hite regions. euah iup beisg surrounded by a
These various solutions can interact (e.g. bimodal multiple.soidd sharp ridge As ith many optical illusions.

bifurcations) and display interesting dynamical persistence wilt cause the image to flp

behavior. Analysis 112-141 can explain the behav-
ior of polyhedral flames, multiple-sided flames
sometimes seen on Bunsen burners (Fig. 9). These
are sometimes stationary, sometimes they spin, ...................
and the number of sides can be changed by vary-
ing the combustion parameters (mass flow-rate,
mixture strength).

Th. right stability boundary of Fig. 5 is rela-
tively inaccessible to physical mixtures but has a
counterpart in the analysis of thermites, which are
solids that burn to form solids and so have Le
so. In the k-O plane (0 is no longer asymptoti- eaos
cally large [151), and again with k restricted to Fig 8 Modification of the left stablht) boundary of Fig. 5 by
discrete values, possible bifurcation points are heat losses. shoiing possible bifurcation points when k -i
identified in Fig. 10). resticted to discrete values
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k

~~Ftg i0. Possble bltU'casoo poist correspoding to planar

ooreogatsoss of thernot¢ flames. A simislar figure can bc coo.

Frg9 Iolyredal omeA ~ baw ~ hoi~ap ~ strwcti or cyhndncat geometry
ref 1

from those of Fig 11 and apparently displays
chaotic behavior.

A rich dynamic tructure is associated withbafurcatons fronm the right stability bosindarics 3 TLSRBULNT FREMIXED FLAMES -FRACTALS AND
[16-181. Fig. 11 shows variations of the flame RENORMALIZATION
speed with tinse f'or a problem discussed in ref. 18and exhibitt 2 - T periodic behavior. Fig. 12 c.3r- Fig. 13 shows premixed flame images obtainedresponds to shightly different parameter values in a laboratory engine at Pnnceton University

isinbes * 5 59530

_______________- ....-......--- ... .

it~~i i0. Po.5bl bifrcaio point coresonin to. planar.525 0 3. 5577

ref

TIMEFsg 11 Flame fr,",i st,, iocty s,. tine iihersorit bommg r From ref F igh p11nassron mhs drspiayn 2' penodi behaisor
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lAmbda= 603000

ga 000 2 0 800 WOO4 IC60 1 00V 1000 100 2800 22160 la 2100
TIME

F ig 1 2 F la m e f r o n t e lo a ty v s. t im e i n t h e r n u te b u rn in g , F r o m r e f 18 w uh p e r m is s io n T h i s a p p e a r s t o d is p l a y c h a o t ic b e h a v io r

[19,20]; the flame is the boundary between the surface. To answer tiss question it is necessary to
products (white) and the reactants (black) These measure the surface area using 'rulers' of different
images are typical of turbulent flames, and one size, plotting the area vs. the 'ruler' length on a
may ask whether or not the flame is a fractal log-log plot (Fig. 14). Between large. and small-

Fig, 13, Flame images in an internat combusion engine at 2400 rpm. From rc. 19 with permission The equmvalence ratios are 09,
08, 07 (top to bottom).
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scale cutoffs, a fractal surface Is characterized by a 18 roxieroors

straight hne of slope (2 - D), 2 D < 3, where D

is the fractal dimension. Note that fractal behavior 16 CH,-A. Moe

is only observed over a 1-decade range of length 0 , OI. ms Model

scales, and this may be too small for the concept 14 -

to be of value. -

Turbulent flames travel faster (Wtb) than 1

laminar flames ( 1V,) because of the enhanced IN.0
average burning area generated by the wrinkling. 10

Discarding other effects (e g. flame-stretch, ref. 1,

p. 146), 8

V,.,b _ A, 2) (3.1)IV,.. o X 13.

(see Fig. 14), and Gouldin [221 has used this idea 4 ________ '_'______

to predict turbulent flame speed as a function of t 20 .5 5

turbulent intensity, Fig. 15 shows some of his 2

results For other mixtures the agreement is not as u to 30

good; moreover Gouldin's choice of X, (the
Kolmogoroff length scale) has been questioned fig 5 Tuibuleot flame-speed vs toibotept tnt y Prom

(231. Nevertheless, the agreement is encouraging. ref 22 wah perissions

Some related mathematical treatments have

dealt with the kinematic flame equation

-G + (V. )G = IV,,, xGj (3.2) lent flame speed will be predicted by this equation

71 1 24-261.

which governs a scalar function G(., t) where the The turbulent field is characterized by a wide

surface G - 0 represents the flame. This surface is range of scales (lI) where to > I> I, (outer and

convected by the flow field 6 and propagates inner cut-offs). and vc 'Iefine

relative to the fluid at the laminar flame speed. G(i) - (G(,t)),, (3.3)

Given a turbulent flow 6 we can ask what turbu- the average of G over all length scales II > I > 1,,

Similarity on the different length scales implies

Ate that

3 aG(l+) +V -/,
(3.4)

where lVw,bl) is a 'partial' turbulent flame-speed

associated with wrinkling on the scales smaller

than I. By definition
A. ..............+ i l~V+ (Q,) - IVo+ as , - to(.)

____ _ so that lVuj can be calculated if the averaging

bit~.,m. to procedure leading to eq. (3.4) can be carried out.

. , ,Existing analyses yield (ibid.)

Fig. 14. Area ,s. cale for a fracial surface. The data points are IF. _ tmn (3.6)

obtained from rel. 21, rortespo'sdmg to a iube-burer flame. -b
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M. where w,' refers to the positive contribution from
hut the -- the various reactions (production) and w,- refers

- to the negative contribution (consumption). The

"Os steady state approximation, valid if c, is small
compared to each term on the right, is

Co / 'o 7 , inns = w7 (4.2)

2 5 If we just examine the change in c, due to the jth
02 reaction, then

S dcY, -dt[ k-k, (4.3)

t.0 0 1i where k (k,) is the forward (reverse) reaction
Fig 16 Calculated structure of a net CO flame using the w
complete mechanism and the short mechanism From ref 27 rate, and the quasi-equilibrium approximation is

ith petmison k , , (4.4)

When these approximations are correctly applied,
or substantial simplification is possible and yet rea-

Urn, i/2 sonable accuracy is maintained. As an example,
utVu,b ~ U - - (37) for stoichiomete methane/air flames a four-step

scheme can be deduced 1281,

CH
4 + 0 2 

k, CO
2 
+ 1-I + H'0

4 REDUCED CHEMISTRY AND RATE-RATIO ASYMP.
TOTICS CO + H20 " C0 2 + H2

The chemistry of physical flames is extremely 02 + 2
H

2 L 2H-O (4 5)

complicated, presenting an insurmountable ob- Additional approximations are sometimes pos-
stacle to analysis and a severe challenge to sible permitting analytical treatment of flame-
numerical simulations unless substantial stmplifi- structure. Thus, in eq (4.5), k3 << ki, so that we
cations are introduced. Consider, for example, wet can define the parameter
CO flames (271. A complete description of the k,
kinetics involves 67 steps with rates characterized 6 (4 6)
by 162 nonzero parameters and a commensurate
number of reactants. Even after unimportant reac-
tions are discarded, 21 steps remain governing 10
species. (The accuracy of such short mechanisms
can be checked by comparing the flame structures n 0) pneate--
they yield with exact calculations, Fig. 16). Clearly 0
additional simplification is necessary and two sim- eli
pie ideas play an important role in this connec-

tion: the steady-state approximation for an inter-
mediate and the quasi-equilibrium approximation
for a reaction.

Consider the ith species. Its variation due to
reaction can be written in the form

d
c
, - (4.1) rig. 17. Example ot a structural simpliheation ansing from

rate-ratio asymptotic After a figure in ref. 28.
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and examine the limit 8- - 0 (rate-ratio asymp- for small-amplitude hgh-frequency waves. When
totics). In this limit the fuel-consumption layer is substituted into the governing equations, with at-
of vanishing thickness and its structure can be tention restricted to a single right-moving wave,
analyzed using the ansatz solutions a(x, t, 0) valid as c -. 0 satisfy

x=0(8), [CH,]o=0, T=-o+08), a + rT o -0 (5.4)

C, C. + 0(s) (4.7) ax a 0

a- + Vcw o + (Y+ 1) V, -(see Fig. 17) Further details may be found in ref. " " aF x a +0 )

28. T" ( 3+ (y-1)A (55)

5 NONLINEAR HIGIT.FREQUENCY ACOUSTICS AND An appropriate solution of eq (5.4) is
COMBUSTION

Auto-ignition is important in many combustion O x - f0t V d (5.6)
problems. In Section 1 we indicated the role that it
can play in one type of deflagration-to-detonation and it may be noted that in the limit a -- 0, " --
transition, and it is central to engine knock in 0 (vanishing anplitude, constant background) the

which point ignition occurs ahead of the primary solution

flame front. High-frequency waves (generated by a = ee (5.7)
turbulence or inhomogeneties) might have a sig-
nificant impact on this process, and recently there recovers eq (51) with w = c-. The nonlinear
have been some interesting extensions of nonlin- term in eq (5 5) will cause dissipation if (and only
ear high-frequency acoustic theory to the problem if) shocks form, but the term on the right can lead
of propagation through reacting gases [29,30). to a growth in amplitude

A periodic sound wave propagating to the right Nonlinear feedback can occur, with the acous-
through a uniform time-independent medium tic signal affecting the mean field (background) if
(constant background) is described by the activation energy is large and

u U + e"'' (l ,0,0) + ... (5.1) ,- 0. , - oo. cA fixed (5.8)

As an example, during the induction phase of an
u =r(pv.,SY) explosion [when the ansatz (1.6) is valid], and for

(p = denst,.v = velocity, S - entropy, Y - mass a left-moving wave [29).
fraction, Tn = speed of sound. ( )- - back-
ground). at - a(x't) + (Oxx), 0 +

If. instead, the background is homogeneous but -
nonconstant. corresponding to a homogeneous ex- T (Y - 1)(5) + + 5)
plosion, so that 2y(51,- iii) - y(y - 1)52, - 2y(5) + 53)

(-1 ) dt - " - yneA/rl" (5.2) . e -
- --

[ef. eq. (1.5), an early.time approximation valid - -2((y+ 1)5 +(y- l)52+ (y- 3)js)o,
when reactant depletion can be neglected, then + )(

2
),

%te adopt the ansatz (30) 2
--

- Uli + (x4±V(l, ,/FhiO) + (', + (5.9)

llere, all the perturbation quantities can be writ-
(5.3) ten in terms of at. j, and 53 (e g. S - c6); T, is

L
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Abstract

Fieth G Nt. Kounalakas. M E and Sivathano. Y R. 1991 Siochasuc aspects of turbulent comibustion proceses Cheinomeirs and
Intelligent LaboraiiY Sysrem. 19* 199-210

M 1tchods of uting stoehaitic simulations to treat nonlinear interacitions in turbulent combustion protessos are descrbed -
cnmphasiang, the ate v! statisticl te-serros techniques to analyze the tarbuleco~-rasdiaiton iuteracitions of nonpremised flames.
Three Aspects of the problem Arc cosidered. as follows the statistis of scalar prop es in turbulent flames, the formulation of
algouthns, to simulate flamsc radiation based on flame ilstis." and esaluatron of the methodology using Recent measureme~nts for
..onlanmw flarns t i .a hown that she procss becomes trjaale through the laminar flamecles Approximation whereby all "cAi
properties are thent to be solely functions of a citonsrd sclar like the mixtunre fratont Thus, the simulations air designed to
generate realizations of misture frations along radiation pats nobh the radiation properties of each realization roand utitig a
naitow-bond radiatiou modl An autotegresuts process that reprodeces probability density functions and spatial And temporal

iroaiof mioutut fraiours Ait found to yield reasonably gooid predictons of the oltiutica pioperitet of ptcrAl wadiatton
intenstis mcasareil Lo turbulent carbon monoside and hydrogenjsst flames burning in stil; alt Although the approath Appears to be
pronusing. additional desriogment is needed in order to treat some of the unique statistical features of iutbulecn thit are tot
encountered durng eunsentionat use Of $tt~titi urme-senies techniques

INTRODUMTON flows. In order t0 control the scone, the discustion
wJI focus on turbulence-radiation interactions of

Stosshastic stmulattons are promising for treat- nonpremixed (diffusion) flames, since this prob-
ing a variety of nonlinear interactions in turbulent lem involves the most significant features of sto-
ilown. Recent studies along these lines include the chastic simulations of turbuknit combustion
urbuilent dispersion of particles and bubbles [1-51. processes.

,he motion and transport of drops in evaporating Initially, methods of simulating turbulent
and combuisting sprays 16,71, and the turbulence- processes were relatiNcly ad hoc [1,21, however,
radiation Interactions of nonpttemixed flames [8- more systemautic techniques currently are being
13). The objective of the present paper is to de- emphasized. This includea full stochastic simula-
scribe the application of this methodology to tion of tire turbulent field, along the lines of
processes encountered in turbulent siomrbtsting Kraichnan [141. to sutdy the turbulent dispersiun

0169439/91/0150 0 1991 - Etisee Soienee Publishers Bi.
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of particles in an isotropic turbulent field 1151. and measurements from turbulent hydrogen and
adapting statistical time-series techniques, analo- carbon monoxide jet flames burning in still air
gous to methods described by Box and Jenkins
[151, for problems of turbulent dispersion of par-
ticles [3,51 and turbulence-radiation interactions SCALAR PROPERTIES OF DIFFUSION FLAMES
[13) The present discussion will be limited to
statistical time-senes techniques since they have
modest computational requirements and provide Scalar property correlations

reasonable flexibility for treating a variety of prac-
tical turbulent flows. Assuming equal exchange coefficients of all

The main reason for interest in turbulence- species and heat, negligible effects of potential
radiation interactions is that radiation levels of and kinetic energies and radiation, and reaction
turbulent flames are generally higher (often 2-3 occurring at an infinitely-thin flame sheet. Burke
times higher) than estimates based on mean scalar and Schumann 1161 showed that scalar properties
properties within the flames [8-121 The bias of in laminar nonpremixed flames were functions
mean radiation levels is caused by nonlinear rela- (called state relationships) of any one of a number
tionships between scalar and radiation properties of conserved scalars. Although the formal require-
in flames This precludes averaging scalar proper- ments are rather restrictive, state relationships have
ties first and then computing radiation properties, been found for many laminar flame systems and
instead, the radiation properties of realizations of are widely used for analysis of flame structure and
the scalar field must be found first and then radiation properties The use of state relationships
averaged Properties other than mean radiation has also been extended to turbulent nonpremixed
levels are also of interest, for example, fire and flames, since they generally can be approximated
flame detectors often use the temporal properties as wrinkled laminar flames The use of state rela-
of flame radiation fluctuations to distinguish tionships for turbulent nonpremixed flames has
flames from background radiation. Furthermore, come to be called the conserved-scalar formalism
maximum (rather than average) flame radiation under the laminar flamelet approximation [17,181.
levels provide the most conservative estinate of Typical state relationships are illustrated in Fig
flame radiation properties for fire safety consider- 1. This involves measurements of the concentra-
ations. Finally, studying the temporal properties tlions of major gas species and temperature. T. for
of radiation fluctuations (moments, probability radial traverses at various heights. x. above a
density functions, and temporal power spectral burner having diameter, d, as well as axial
densities) provides information to better under- traverses, within laminar nonpremixed carbon
stand turbulence-radiation interactions, analo- monoxide/air flames having various burner Rey-
gous to the information provided by he temporal nolds numbers, Re. In this case, the conserved
properties of velocity and concentration flua.lua- scalar is the local fuel-equivalence ratio (the mass
tlions to better understand turbulent mixing. Thus, fra,.tion of fuel elements irrespective of species
the general problem of turbulence-radiatio inter- divided by the stoichiometric mass fraction of fuel
actions involves both the mean and fluctuating elements). Predictions based on the assumption of
radiation properties of turbulent flames [11,121. local thermodynamic equilibrium for an adiabatic

Statistical time-series simulations of the radia- flame, using the Gordon and McBride [191 al-
lion prop.rties of turbulent flames are based on goritlim. are also shown on the figure. Aside from
simulation of scalar properties within the flames, temperature (%here radiative heat losses and er-
Therefore, the paper begins with a description of rors of uncorrected temperature measurements are
the statistics of scalar properties in turbulent a factor) the measured state relationships are seen
flames. The formulation of typical stochastic to be in excellent agreement with equilibrium pre-
simulations is then considered. The paper con- dictions. Thus, the tendency of reactive systems to
eludes with evaluation of the methodology using approach equilibrium provides a physical justifica-
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10 V i , have been found from measurements in lammar
TRAVERSE x/d Re . flames for a variety of fuels burning in air: hydro-

08 o RADIAL 107 71
A RADIAL 2.14 71 Co Igen 19,171, methane [18,20,211, propane [221. n-

06 - RADIAL 107 120 -4 heptane 117,231, acetylene [11) and ethylene [101
0 RADIAL 2.14 120 I Hydrocarbons exhibit significant departures from

04 -* AXIAL - 71 W local thermodynamic equilibrium at fuel-rich con-

0 AXIAL - 1200 ditions due to effects of finite-rate chemistry asso-0 E2 I.PEL ciated with soot processes; however, these depar-

00 tures are still relatively universal so that adequate
state relationships are still found except near

08 - points of flame attachment. Finally, generalized

06 - state relationships have been found for hydro-
carbon/air flames so that tedious measurements

Z 04 N2  to find state relationships for specific fuels can be
2

2- - Application of the conserved-scalar formalism
0c _ and the laminar flamelet approximation to find.03 - the structure of turbulent .lames has been rea-

(.0 sonably successful for virtually all the materials
02 - for which state relationships are available [8-
0 I 13,17,24,25] Recent studies also suggest that stateil 02 relationships for soot volume fractions, an ir-

00 1 portant property for estimates of continuum radi-
ation from soot, exist in turbulent flames having

04- sufficiently long residence times (26,27). This im-

012 plies that scalar properties needed to estimate
radiation are strongly correlated through their state

00 relationships and can be simulated by simulating a
2000 4 conserved-scalar alone

1600 Tixture fracion statistics

1200 Mixture fraction, f, defined as the fraction of
8 elemental mass that originated from the fuel, is

800 the conserved scalar most commonly used to find
40 'the scalar structure of turbulent nonpremixed

10
1  i00 101 flames. Turbulence models under the conserved-

scalar formalism are designed to provide estimates
FUEL EQUIVALENCE RATIO of the mean value and variance of mixture frac-

Fig I State iclationihips tor c.bon monoxide/air diffusion tions [17,28). Methods used to estimate the other
flames Froni Gore et al, 181 statistical properties needed to simulate mixture

fraction distributions along radiation paths -
probability density functions and correlations -

tion for the laminar flamelet approximation in this will be considered in the following.
instance. A fuel burning in air involves instantaneous

State relationships for the concentrations of properties at any point that can be pure air, pure
major gas species and temperature, adequate for fuel or some mixture of the two with scalar prop-
estimates of structure and radiation properties, erties given by the state relationships. Several
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012

probability density functions (PDFs) of mixture 2a\0 Re *7400. ./d o 50
fraction, P(f), have been proposed to accommo- DAA-- AA

date these possibilities but the clipped-Gaussian - ose -- J CLIPPED GAUSSIAN
PDF has received the most attention 128). This 1,2
involves a Gaussian function defined in range
0 <f< 1 with the tails of the distribution replaced - I
by Dirac delta functions at f- 0 and 1 that have 03 n io
weights equal to the probability of 1 <0 and f > Ii
for the original Gaussian distribution, respec- oc
tively. Thus, the air intermittency of the flame at
any point, defined as the fraction of time spent in ,
ambient air, is given by the weighted Dirac delta 004 /i00

function at f- 0. 0

Recent measurements in noncombusting and 0
combusting turbulent flows suggest that the
clipped-Gaussian PDF of mixture fraction is rea-
sonable (29,301. Some typical results are illustrated
in Fig. 2 for turbulent carbon monoxidejet flames 0 02 04 OC 06 0

burning in still air. The measurements in the fig-
ure are fitted with clipped-Gaussian PDFs having
the same mean values and variances Results are . Re 400, x/A 30

shown for various radial positions, r, before and 064- D A

after the flame tip (x/d- 30 and 50). The air :i
intermittency spike is prominent for these condi- 0

tions but the fuel intermittency spike can only be
seen in the fitted PDFs near the axis at x/d - 30. G06 ,
The main deficiency of the clipped-Gaussian fits
is that they fail to represent the broadened air
intermittency spike caused by direct mixing be- Q04 -i W

t%%een turbulent fluid and air near the edge of the 03

flow (the air superlayer). A PDF having additional nsa
moments is needed to correct this problem; how-
ever, the complication of finding addition mo-
ments has not been pursued pending evaluation of 000

the performance of the two-moment PLF. Nota- 0 02 04 f 06 08 to

bly, the functions used for mixture fraction PDFs Fir 2 Typical probabiliy densiiy funcions of mixur frac-
normally do not have a strong effect upon predict- rion for a turbulent carbon monoxide/air diffusion flame
ions of scalar properties in turbulent flames [281. From Koonalaas and racih 130

Correlations of mixture fraction fluctuations,
1', have been measured for turbulent jet-like flows
for both noncombusting 131,321 and combusting
[30] conditions. Some typical spatial correlations
arc illustrated in Fig. 3 for a carbon monoxide jet The correlations are plotted as a function of Ar, F,.
diffusion flame burning in still air. These results where Ar is the distance between the points and
involve two-point spatial correlations of mixture F, is the spatial integral icale in the radial direc-
fraction fluctuations for horizontal radial paths tion. The spatial correiations exhibit remarkably
through the flame axis at positions before, near, little variation with either radial or axial position
and after the flame tip (.x/d = 30, 40, and 50). when plotted in this manner. A simple exponential
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0 Temporal correlations of mixture fraction

R._,to 4 fluctuations have been measured for the turbulent
,; * o "',o- s carbon monoxidejet diffusion flames as well 1301
0 0042 0040 0040 These results were also relatively independent of

g0 0 lie O76 0090 position and could be correlated by an exponen-
- 16, 0V47 T tial function analogous to eq. (1) with time dif-

xO -r4- - ferences, At, normalized by the integral time scale,
6 - ".

"
, (subject to the same limitations as eq. (1) near

R~. At = 0) The exponential form of the low-resolution temporal correlation measurements agrees
with earlier findings for noncombusting flows [32]

x,. 40 With exponential functions established as rea-
o "sonable approximations of spatial and temporal

correlations of mixture fraction fluctuations, the
next problem is specification of integral scales0 Measurements of these scales for turbulent carbon::,0 - monoxide jet diffusion flames are illustrated in-o2 L. Fig 4. The scales are normalized as I'r/x and as

00 20 40 60 so 100 'Kum/(X - XO), where u. is the average velocity at

A,/r, the burner exit and xo is a virtual origin at vo/d
Fig 3 Spaiiat rretions of mixture fraction fluations for = 13 When correlated in this manner, the inca-
a turbulent carbon monoxide/air diffusion flame From surements tend to collapse to single curves for a
Kounalakis and Faeth 1301 range of flame positions The spatial integral scales

are relatively independent of radial position and
can be correlated as F,/x = 0017. In contrast, r,

fit of the spatial correlation: is smallest at the axis. This behavior can be ex-
ij1/2 plained through Taylor's hypothesis, e.g., 71 -

f'(r)f'(r + Ar) /(f'(r)f'"(r + Ar)) r/i, where i is the local time-averaged stream-

= exp(- Ar/l,) (1)

is also shown in the figure. The exponential fune- 06
tion is seen to provide a reasonably good fit of the R " 7400
measurements, as illustrated in Fig. 3. This is L ___ ._ d 7_
partly due to experimental limitations, since the 04 ,o 30
spatial resolution was not sufficient to resolve the 0 40

smallest scales of the flow which are expected to Q 0 i

modify the correlation near Ar = 0 130). Neverthe-. - 0%less, the exponential expression provides a good eo

representatien of the larger scales that contain 00
most of the signal energy and are expected to have 0
the greatest influence on turbulence-radiation in- 009 7 o 0 V
teractions. It should be noted, however, that these
results differ from earlier findings in nearly con- 000 1
stant density jets where radial correlations of mix- ooo 004 008 042 016 020

ture fraction fluctuations had the shape of a rl
Frenkiel function 131,321 - these differences be- Fig. 4. Temporal and spatial integral eales in a turbulent
tween combusting and noncombusting conditions carbon monoxide/air ditusion flame. From Kounalakis and
must still be resolved. Faeth 130.
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wise velocity, while F, is nearly independent of correlations and power spectra of spectral radia-
radial position and it is a maximum at the axis. tion intensities in the usual manner. The formula-

Results concerning mixture fraction statistics in tion of the simulation and the narrow-band radia-
Figs. 2-4 were generally preserved as the Rey- tion model will be discussed in the following
nolds number of the carbon minoxide flames was It will be assumed that the statistical properties
increased [30]. Nevertheless, thi. only represents of mixture fractions are known along the radiation
fragmentary findings for a single reactant combi- path. This includes P(f) (taken to be a clipped-
nation, and generalization is needed to treat other Gaussian function), spatial correlations, and tem-
flame systems. One proposal has been to assume poral correlations if temporal properties are
that the radial spatial integral scale is proportional needed (both taken to be exponential functions)
to the local dissipation length scale [12,13], as Aside from isolated cases where measurements are
follows: available [30], these properties must be estimated

from a model of the turbulent combustion pro-
F, - CCP314k/2/ (2) cess. For flo~vs having relatively high Reynolds

where C, is an empirical constant having a value numbers, this is generally done using a turbulence
in the range 5-7, C, is a turbulence modeling model Fortunately, for relatively simple flame
constant having a value (.i 0 09, and k and C are geometries, like buoyant jet flames, turbulence
mass-weighted (Favre) averaged turbulence kinetic models provide reasonably good estimates of scalar
energy and dissipation found from structure pre- properties, including mean and fluctuating mix-
dictions using a turbulence model The temporal ture fractions [8-13.24,25] The necessary statisti-
integral scale was then estimated using Taylor's cal properties of mixture fractions are then found
hypothesis while assuming that streanwise and as described earlier.
radial scales were the same, as follows: Due to the exponential form of the mixture

fraction correlations, it is most convenient to carry
(3) out the simulation as an autoregressive process

tAhere R is the niass-weighted (Favre) averaged [15] This involves finding the mixture fraction
mean ve!ocity in the streamwtse direction Eqs. (2) fluctuation at any point as a weighted sum of

and (3) are consistent with the results illustrated in fluctuations at other points and a random shock

Fig. 4 but additional study of the approximations A procedure of tlis type encounters difficulties
is certainly needed For lack of an alternative, eqs with any finite range PDF, since the fluctuation

(2) and (3) will be used to find integral scales in algorithm can easily generate a value of the vari-

the following able which is beyond the range of the PDF, This is
handled by transiorming the simulation from f,
which has a clipped-Gaussian PDF, to a corre-
sponding Gaussian random variable :. with ap-

STOCHASTIC SIMULATION propriate moments to match P(f), so that

Formulation f=:.0: 1< f-0.,: <0; f/ l.:>
(4)

The stochastic simulation provides realizations
of nixture fraction distnbutions along radiation Since the P'DFs of f and z are not the same,
paths through the flow. Given the mixture frac- correlations of f and z differ as well. Methods to
tions, the state relationships provide all other find the appropriate correlations for : will be
scalar properties so that spectral radiation intensi- taken up later.
ties can be calculated from a narrow-band radia- Values of . are simulated at a number of points
tion model for each distribution. The resulting along the radiation path. Following Box and
ensemble, or time series, of spectral radiation in- Jenkins [151. the value of the fluctuation of z at
tensities is then used to compute moments, PDFs, point i. :. is found as a weighted sum of fluctua-
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tions found earlier, z,'. where j = z - I., p. and radiation path at times At apart. The simulation is
a random shock, a,, as follows- initiated by finding a realization using the time-in-

- I dependent solution. Realizations are then found at
z4 = _ 0, z' + a,; 1 -.<p < - 1 (5) subsequent times considering correlations with all

I-P previous irealizations, until temporal correlations

The index p is selected to elimnate points having are properly represented. Subsequently, the points
at the earliest time are dropped when calculations

small correlation coefficients with respect to point at the et time are begund wor calculations

i. The 0,, are weighting factors so that the simula- for the next time are begun, for computational

tion satisfies correlations between fluctuations at efficiency
various points appearing in eq (5). The parameter The main new difficulty with the time-depen-a, is an pncorrelated Gaussan random variable dent simulation is that two-point-two-time corre-

a, i anuncrreltedGausia ranom arible lations are needed Information of this type is not
having a mean value of zero and a vanance selected avilae teefe, tfolon a h o ap -

so that the simulation satisfies P(z,) available; therefore, the following ad hoc ap-

Box and Jenkins (151 derive expressions for the proximation has been adopted for lack of an alter-

, and the variance of a, a, as follows- native 111

,i _I k i (t)zt -kAt)=R,(kAt)z'z' (8).- .c,, z.; k -p .......1 (6)
I-P where R,(k At) is the temporal correlation coeffi-

-2 ,cent of z, fluctuations at a time delay of k At.
a,,= , - E (7) Naturally, it would be just as plausible to use

J-P Rj(k At).; z on the right-hand side of eq. (8) for
With the correlations between the various points a stationary turbulent flow. The differences be.
known, eqs (6) provide i-p linear equations, called tween these possibilities provides a measure of
the Yule-Walker equations, needed to find the potential errors resulting from the use of eq. (8).
0, This system of equations has a symmetric Since r, is nearly constant over a cross-section of
positive definite main% and can be solved readily the flow, eq. (3) indicates that errors are greatest
using Cholesky factorization Given the 0,), J" in regions where i varies rapidly. Fortunately,
can be found since all qu.tntties on the right-hand spatial correlations become small for separation
side of eq (7) are known, distances of 1, and I does not vaty significantly

A time-independent simulation is initiated by over such distarces, pt viding some justification
making a random selectior for point 1, noting that for the approximation.
:: - aj from eq. (5) and ,ii = !1' from eq. (7) The When temporal correlations are exponential.
regression relationships are then successively ap. use of eq. (8) for two-point-two-time correlations
plied to find the remaining :, along the radiation leads to substantial simplification of time-depen.
path Finally, the f, are found from eq (4), noting dent simulations. Carrying out a derivation similar
that :, = Y, + ::, followed by computation of spec- to that of Box and tenkins 1151 for a pure time
tral radiation intensities for this realiztion. as series with stationary statistics and an exponential
described earhir This process is repeated a suffi- temporal correlation yields simlar results for the
cient number of times to obtain statistically sig- .onibined spatial/ temporal simulation with tem-
nificant radiation properties. poral correlations varying according to :q. (8),

The previously computed points in the regres- namely the O,, - 0 for all points at times less than
sion process of eq. (5) only enter the calculations t - At. Thus, only the realization at t - At must
through their correlations, therefore, time-depen. be retained while developing the realization at t.
dent simulations are essentially the same as time- vastly reducing the storage and computational re-
independent simulations after appropriately num- quirements of the simulation.
bering points to keep track of them in space and Another useful simplification is that radiation
time. This involves realizations of f along the predictions are relatively insensitive to the fune.
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tional form of the spatial correlation, since they where f(z,) and f(,) are obtained from eq. (4)
are found by integrating properties along a radia- and P(z.. z,) is the probability density function
tion path [13,331 Thus, temporal simulations using of zj given z,. Now, the correct correlation for the
statistically independent points spaced a distance z variables can be found by considering an auto-
F1 apart along the radiation path yielded results regressive process between the two points under
that were essentially the same as simulations that the present approximations, as follows
satisfied twenty-point fits of spatial correlations , -75
along the radiation paths 113). This simplification ztz 5/) + a (12)
reduces the simulation to a first-order (Markov)
process in time at each point, for an exponential where a, has a Gaussian PDF with

temporal correlation, yielding [151: - -2 - 2 2
, ( t - R j A )z;(t - A t) + a , (9) a1 z, (Z; Z") / ' (13)

where Then, for any realization of :,, P(z: z,) is a

S(1 - R,( 0)2 Gaussian distribution having a mean value of 1 +
I- R,()z (10) :Z 

)
and a variance of a,-, while P(z,) is a

Gaussian distribution having a mean value of
and a variance of z . Substituting thene expres-

Initial time-series simulations of mixture frac- sions, along with f(:,) and f(z,) from eq (4) into
tion distributions involved the approximation that eq. (11) yields an expression relating f,' f.' and
correlations of f and z were the same [12,131. This - T epression must be evaluated numeri-

was adequate in most regions of the flames but cally for a clipped-Gaussian P(f) The procedure
discrepancies between actual and simulated corre- w c, 2 a - ad
lations of mixture fraction fluctuations were sig- -to s e v s"7a,,

nificant in regions where either air or fuel inter- find the corresponding values of ff , and f, &,.
mittencies were high 113). The cause of the diffi- Present results were found by integrating over the
culty is the transformation from f" to z, since : region within 5 standard deviations from the mean
has an infinite range while 0 f< 1. This implies of the PDFs.
that the correlations of the fluctuations of z must Since the temporal correlations of f are ex-
be corrected in order to properly simulate the ponential. it was convenient to fit the correlations
correlations of the fluctuations of f. of z in the same manner and to express the

A gencralized correction of the . correlations corrections of the correlations as ratios between
has been developed for any two points, i>j, the temporal integral scales of f and :, f//iL. This
having identical mean and fluctuating mixture ratio is plotted in Fig. 5 as a function of (" )i2

fractions. f, -=]-f and M i.e.. for with f as a parameter. The results are symmetric

temporal correlations at stationary conditions. The with respect to f=9.5. The plo's of lr,/,r at a

simulation is carried out with the z variable where particular value of f are terminated at the maxi-

- and can be found from mum possible value of (f") i.e. where P(f)

the transformation of eq. (4). In order for the degenerates to Dirac delta functions at f= 0 and
sic1. The ratio of //7, decreases from unity ass i m u l a t io n t o y ie ld t h e c o r r e c t c o r r e la t io n . A l f ", i n r e ss,- a p r a cete t e r 0 o r 1(7)/inraean!approaches either 0 or 1.

the value of - :, must be corrected so that the Thus, there is n.) correction when z remains in the
follawing equation is satisfied range 0-1 where z -f. Whenever, < 0 or , > I,

77 +7 however, z
2 

> / and the correlation for f gener-
ally is less than the correlation for z so that rl/r

-f f(:,)P(zi)J f(a,)P(z,: ,) dz, dz, is less than unity.
,. .o Simulations usmno 2 cted correlations for z

(!1) were evaluated for 'z,/' >0.1. Using 10' reah.
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concentrations in regions where temperatures areCUPCD-GAUSSAN POF high

i.0

T . CS

0.4 0.410 6 RESULTS AND DISCUSSION

0 210 8 Some comparisons between simulated and men.
06 - sured radiation properties will be considered in

0.050 09s order to illustrate the nature and effectiveness of
0 4o the simulations. The discussion will be limited to
S O tBLE-tOLTA tiMir results reported by Kounalakis et al. 112,131 for

vertical turbulent hydrogen and carbon monoxide
0.2 jet flames burning in still air. Spectral radiation

intensities, i were measured for horizontal radia-
tion paths th. )ugh the axis of the flames Predict-

0 6 ions were based on the present formulation of the
t1-2)/t2 stochastic simulation of mixture fraction distribu-

Fig 5 Ratio of smulated and oiginal integral scales for tions. As noted earlier, twenty-point fits of spatial
exponenial correlations of functions haveg cipped-GausSan correlations is the simulation yielded essentially
probability density functions. the same results as the simplified formulations of

eqs. (9) and (10); therefore, the following results
2 are based on the simplified formulation. Mixture

ations, values of fand 7Z' were satisfied within fraction statistics were estimated based on struc-
1% while values of f 'f'/f' were satisfied within ture predictions using a turbulence model This
3% Analogous calculations to find the corre- introduces uncertainties although the turbulence
spondirn corrections of the correlations when f model yielded reasonably good predictions of
and f' are not the same at the two points are scalar structure for the same flames during earlier
straightforward on a case-by-case basis. studies 18,9).

Predicted and measured probability de sity
Narrow-band radiation model functions of i, are illustrated in Fig. 6 for posi-

tions before, near, and after the tip of a hydrogen
Given the distribution of scalar properties along jet flame (xid = 50, 90, and 130). These results

a radiation path, through the stochastic simulation are for a wavelength A = 2520 nm which is within
of mixture fractions and the state relationships, a prominent infrared gas radiation band for water
spectral radiation intensities are found by solving vapor. Near the burner, the PDFs are relatively
the equation of radiative transfer along the path. symmetric but they become increasingly skewed as
Present results involved using a narrow-band distance from the burner exit increases. This is an
model, ignoring scattering, due to Ludwig et al. effect of air intermittency as mean radiation levels
134). The procedure uses the Goody statistical become small, since the spectral intensity can never
narrow-band model, with the Curtiss-Godson up- be negative while the mean value is generated by
proximation to account for absorption along mho- occasional period-, of high radiation levels. The
mogeneous gas paths. This model accounts for the stochastic predictions represent the measurements
infrared gas bands of water vapor, carbon dioxide, reasonably well, particularly for the small path
carbon monoxide, and methane, as well as con- diameter which more closely approximates the
tinuum radiation from soot. Radiation contribu- negligible path diameter of the simulation
tions of other species in hydrogen, carbon mono. Predicted and measured temporal power spec-
xide, and hydrocarbon flames burning in air are tra of spectral radiation intensities, E,(n), are
generally negligible since these species have small illustrated in Fig 7 for positions befor, near, and
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08 1 1 1 o 1 located off axis near the burner and moves toward

Re • 3000, ,.252o the axis with increasing distance above the burner.
DATA PATH I0AM.(.) Since temporal integral scales are smallest near the

06 0 1o axis (see Fig. 4), this implies a corresponding
. 5

0 PREDICTION - increase in the break frequency when normalized
by properties at the axis.

04 The predictions provide reasonable estimates of
o0\ break frequencies and signal properties in the

energy-containing region for the results illustrated
02 /d •130 in Fig. 7. The main deficiency of the predictions is

that they underestimate the rate of decay of E,(n)
at high frequencies. Two main reasons can be

0 0 advanced for this behavior. First of all, spectral
intensities were measured for a finite diameter

1, radiation path. This tends to average out high-
frequency effects over the cross-section of the

o radiation path in comparison to predictions which302 f
I represent an infinitely thin path. An indication of

this effect can be seen by comparing measure-
ments for 5- and 10-mm-diameter paths appearingoo in Fig. 7, which show that the spectra decay more

0 4i rapidly for the larger-diameter path. Secondly, the

02-

00 10 1 t 116
-4 -2 0 2 4

Fitg 6 Measured and predicted probabilay densitty functions 50
of speciral radiation Intrstses for a turbulent hydrogen/aIr
difutosin flame From Kotnalaks ct a] 1121

after the tip of a carbon monoxide jet flame . '
(x/d - 35, 50, and 65). The power spectra are 0
plotted as a function of frequency, n, both nor- 1
mahzed by the characteristic frequent), i"/x, DATA PATH tOM (-)

where F,, is the mean veloety at the flame axis. is
The spectra exhibit a break frequency with an PREDICTION -
energy-containing region having a nearly constant
EX(n) at low frequencies, followed by decay of
E.\(n) with increasing frequency beyond the break I. . -, T is' ts'
frequency. Normalized break frequencies increase .'/7.
somewhat with increasing distance from the rtg 7. Mured and preited temporal pouce ipetrat dei-
burner. This follows since the high temperature ites of spotral radiation intensiies for a tubulent carbon
region that contributes most to radiant emission is monoxide/air diffuston flame From Kounalakis in at. [131
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Nonequilibrium chemistry and flamelet
modeling of nonpremixed turbulent

reacting flows
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Practical combustion systems often involve the chemical approximations used in describing the
burning of nonpremixed fuel/ air systems in a flanielets. In some situations local thermodynamic
turbulent flow environment. While tie ultimate equilibrium chemistry is appropriate In other
modeling of such nonpremixed systems will inevi- cases finite rate chemistry is needed. In the discus-
tably involve the dire(t solution of the three-di- sion that follows we consider the incorporation of
mensional iime-dependent c.onservation equations finite rate chemistry into flamelet models of non-
of mass, momentum, species balance and energy, premixed turbulent combustion.
such a task is computationally infeasible on even Due to the spatial variation in the stretching of
the largest supercomputers at the current time. the turbulent flame, the flamelets are subjected
The primary difficulty with such an approach is instantaneously to a certain rate of strain. This
that there are large variations (orders of magni- can be represented in terms of the scalar dissipa-
tude) in the length scales present in the reacting tion X,i at the point of stoichiometry [21
flow. The ability to resolve the relevant solution
structure requires computational resources that Pr (d)
currently do not exist. As a result, the modeling of Xt - 2a-, dt (

nonpremixed turbulent reacting flows requires the
introduction of a number of sinlphfying assump- where a is the strain rate. C is the Chapman-

tions to make the problem more tractable. One of Rubesm parameter, Pr is the Prandtl number and

these methods, the lammar flamelet model, con- i is a density weighted coordinate The implica-

siders a turbulent flame to be composed of an tions of this model are that at any point of space

ensemble of thin lammar diffusion flames. It can the instantaneous local composition of the turbu-

be shown that these flamelets have a one-dimen- lent flame is that of the diffusion flamelet. Local

sional structure normal to the surface of the conditions may be viewed as corresponding to a

stoichiometric mixture [1). The model is applicable flamelet in a flaielet family that is parameterized
if the length scales of the turbulent eddies nre by the degree of stretching X, The structure of

much larger than the reaction zone thickness of the flamelet provides a unique relationship be-
the flamelets. The structure of these flames are tween any scalar S and Z. We write this in the

often described in terms of a conserved scalar Z form

called the mixture fraction. The mixture fraction S -S(Z.X) (2)
can be considered to be the fuel element mass
fraction in the system. Variations of the laminar We treat Z and X,, as random variables whose
flamelet approach center primarily in terms of the joint probability density function (PDF) /(Z,X.)

0169-7439/91/$02150 0 1991 - Etsiesier Scene Pubtishers B V
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must be deternuned. In practice the PDF is fac- either a Tsuji or a Seshadri-type burner [5,6]. A
tored such that similarity solution is sought for the two-dimen-

P -III P(Z)P(Xll) (3) 'inlgoenn conservation equations The
flamletprolemis henreduced to solving a

Ordinarily, P(Z) is taken to be the beta function nonlinear two-point boundary value problem along
and P;(X,) is taken to be the log normal distribs.- the stagnation point streamline. Individual
tion [3]. The mean and variance of the log normai flamelet ciculations can be made for a given
distribution are computed from the first moment chemical mechanism, transport approximation and
of x. and the Favre averaged turbulent dissipa- jet velocities. Once the computation is completed,
tion and turbulent kinetic energy, respectively, the solution can be stored as a function of the
With this formalism established, scalir properties mixture fraction with each flamelet charactericed
are determined by postulating a set of burned and by the scalar dissipation at the point of stoichio-
unburned states [2). In particular, we can write the metric mixture.
Payee averaged value of the burned contribution
to the scalar S as REFERENCES

f (X~fI S(ZX)i(Z)iP(X) dZ dXi, (4) 1 N Peters. LUmiar diffusion Blaici modets in nonpre-
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Abstrct

Randid. Nf. 1991 Navel graph iheoretical atpproacsh to lbuteroatums, in qoaniiiaio siructure-isiiity Aetaionsbips tcbemcmeirit and
intelligent Laborarorv Ssstensr 10 213-227.

A navel approash to tharasieiizaiion of heterotois ini graph theoreical ipproahes to quanitiaivsn ruciure-siviy relation.
ships (QSARI n. outlined, The bais of the approash is the ate of diagonal tries of the idjacency matrix as variable paratnoter. in
full analogy to th, well knon eelzain of the Iltsll Moteculat Otboittl k1tMO5 method wvhen extended to hetticottjugaitd
systems The approach is illustrated on slonidine-like iompounds where swxbon and chlorine atoms , rc discriminated by using
a - 0 20 astihe diagonal entry lt chlorine atoms. Derived %eighted path numbers are used as decsriptors, and A multiple regression
based on three dessbnptors resulted in the sorrelation tcaiflisieni R -0 977 and the standard error S - 233 This represents A
substantial improvement over the best ttadttional QSAR "Alysis sbish iniolss foe dcsi,ptwt m a nontrhnsai cireltao equatio
with R 5 0964 and S - 0301) A detaited comparison is made with aV3aahe QSAR results, and the adsantages (as sell as
limitains) of graph theoretical descriptors are discussedt

INTRODUCTION manipulates structures algebraically. using partial
order and ranking based on selected standards, Of

In contrasting graph theoretical schemes [I] to course, graph theoretical descriptors also lead to
traditional quantitative structure-activity relation- struaturc-property and struieturc.-acttvity correla-
ship (QSAR) methods 121 one cannot fail to ob- lions based on statistical analysts 13-61. The appli.
serve the zomplemeniarity of the two approaches. cations of graph theory [7) to QSAR cover a
Traditional QSAR is mostly based on a large variety of topics, from the study of various physt.
number of empirical parameters. The graph lico- cocehentcal data to biological activittes and toxici-
retical approaches use a rather small bet of struet- ties (refs. 1, 2 and 5-7, and references cited therein.
ural invariants, graph invariants in particular. In and refs. S-24), including even the use of graph
traditional QSAR one uses statistical methods tn theoretical descriptors in pattern recognition (251.
order to select critical descriptors and derive a lBnt the prime distinction between graph theoreti.
structure-activity correlation. In grapht thteory one cal schemes and traditional QSAR is that the

former is 'structtire-eplit while the latter is
*structure-cryptic' (1]. The former uses wvell de-

Tis papver as dedicated to professor Dusan ttudla from Boris fined mathemastical invariants whtch have ,a direct
KidriC Institute in Ltjuhttmts Stosmna. Yugoslavia structural interpretation, while the latter are mostly
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expressed as physicochemical properties that re- theless lead to quantitative results when infurma-
main to be interpreted structurally. For example, tion on selected standards is available. As long as
the molar refraction (MR) has frequently been the molecules considered are structurally closely
used as a descriptor in traditional QSAR, but how related (e.g. they have the same heteroatoms in
MR depends on mnlecular structure, so that it can similar locations and have the same stereochein-
be predicted once the chemical structure is known, istry) graphs can be employed and useful orrela-
still remains to be understood. The distinction can tions derived [28-361. A neglect of heteroatoms
be illustrated by reference to a particular study of and spatial molecular architecture may appear to
selected physicochemical properties of over a be severe limitations of graph theoretical models.
hundred compounds by Cramer [26]. Using prin- However, for QSAR studies concerned with a
cipal component analysis Cramer has shown that search for optimal compounds, once lead con-
aqueous solvation or the activity coefficient in pounds are known, graph theoretical schemes were
water, partition coefficient (octanol/water), boil- found to be quite successful, not only in suggest-
ing points, molar refraction, liquid state molar ing a more potent compound, but in providing
volumes and heats of vaporization, vzhich mutu- assurance that the compound thus found is the
ally show, variable pairwise correlations, from non- best possible one within the given family [37J.
existent to very high correlations, can all be well An extension of molecular graphs to molecular
explained (at 95% variance) bN two variables This structures by embedding graphs on a regular
illustrates well the presence of structural factor, as three-dimensional grid has only recently been con-
yet to be identified, on which all the studied sidered [38-401 By using topographic (geometri-
properties cntically depend. According to Cramer cal) matrices, rather than topological (graph theo-
1221 ". it seems possible that n olecular connec- retical) adjacency matrices, one can differentiate
tivity indices way represent alternative axes for between different conformers, such as cis and
compound subsets within 'BC(DEF) space'." Un- traits, boat and chair, between individual rota-
certainty here reflects upon the intrinsic difficulty tional isomers, etc. Importantly, the derived
associated with attempts to express mathematical molecular descriptors are quite analogous to
properties (graph invariants) as a combination of molecular connectivity indices, weighted path
physicohemical variables, instead of the other numbers and other graph-related invariants, ex-
way round. If Cramer is correct in identifying the cept that now they are sensitive to precise molecu-
connectivity indices as alternative axes of ph)si- lar geometry. Moreover, the indicated generaliza-
cohemical space, the two major variables being tlon from adjacency (connectivity) to topography
identified as 'bulkiness' and cohesiveness', that (geometry) suggests further generalizations of
would only idieate that 'bulkiness' and 'cohesive- graphs in which structural invariants are derived
ness' as molecular properties, will corelate with from other matrices associated with molecules.
the connectivity indices, such as the bond order matrix. the bond polariza-

bility matrix and even the ilamiltonian matrix
141). It appears that we are only at the beginning

LIMITATIONS OF GRAPH THEORETICAL AP- of new directions in our search for useful molecu-
PROACIIES lar descriptors. lowever, here we will restrict our

attention to another generalization of graphs: to
Graphs depict molecular connectivity and as the problem of treating ieteroatoms.

such are devoid of information on heteroatoms Applications of graph theoretical methods in
and the spatial arrangements of atoms. It is not QSAR to molecules with heteroatoms in more
then surprising that to uninitiated people graph general positions lead to a number of generaliza-
theoretical schemes appear at best unpromising, if tion of simple graphs. Kier and Hall 131 intro-
not doomed to failure. fqually, graph theory does duced the concept of valence connectivities in
not produce numerical data, analogous, say, to which they associated different 'correction' factors
quantum mechanical computations. It can never- with different heteroatoms. Kupchik [421 onsid-
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ered the use of Van der Waals radii of hetero-
atoms as a source of their discrimination by suita-
bly modifying the connectivity indices, Hansen 0
(431 similarly considered purely empirical correc-
tion factors for heteroatoms. In this paper we will
outline yet another alternative approach to hetero-
atom which has some analogy with generalizations
of Htiekel Molecular Orbital (HMO) methods from
hydrocarbons to heteroconjugated compounds [441
and represents an extension of an earlier work on
sensitivity of path numbers to variation in bonds
involving oxygen and nitrogen [45).

CLONIOINE-LIKE INIOAZOLIDINES - AN ILLUS. 7C 7CTRATION OF A GRAPtI TIHEORETICAL APPROACH TO
IIEPP.ROATOMS

We have selected clonidine and clonidine-like
imidazolidines - compouiids having a hypoten. 5,
sive action - because in these molecules chlorine
(as heteroatom) appears in different locations and
therefore the compounds offer a suitable test if the
suggested novel descriptor for a heteroatom is £ .-/
adequate. The clonidine-like compounds ex- '2 '

amined here have been extensively studies in the rFs. I Numbenng of the compounds and diagrams of the
past [46-481, including a particularly detailed sinable fragment of 2.(arylhnno)mdazohdines considered
study by Timmermans and Van Zwieten [49] based Chlonne atoms are indicated as small circles

on the traditional QSAR. Thus it will be possible
to make a detailed comparison between the corre-
lations based on molecular properties as descrip. The four compounds selected illustrate a lack of a
tors and our results derived from the use of graph bond additivity for the biological activity (expert-
theoretical indices as descriptors. Moreover, the mental ED5n values in pg/kg obtained from
data set used includes two extreme potency values dose-response curves following intravenous ad-
which would be expected to give trouble in curve ministration to anesthetized, normotensive rats,
fittings and cross-validation, and hence the data i.e., in-vivo effective dose which produces in 50%
enables a critical test of a modelling of biological of population anesthesia). Any bond additive
activity to be made. scheme should interpolate data on derivatives with

A need for a novel appraoch to heteroatoms in a single methyl and single chlorine between the
graph theoretical approaches becomes apparent dimethyl and the dichloro derivative, but this ap.
from a comparison of the biological activity of the parently is not possible here.
following:

Compound Activity TRADITIONAL QSAP5 CORR1ELATIONS BErWEEN

2.4-Dimeihyl 810 PROPLRTIES AND ACrIVITY
2-methylclr 275
2-Methyl,4-chloro 275 In Fig. I we depicted molecular skeletons of the
2,4-Dichloro 61 18 imidazohidines from a collection of 27 reported
2-Chloro, 4-methyl 53 in the study of Timmermans and Van Zwieten
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[49). We have restricted our attention only to ity, because the analysts is confined mostly to
clonidine derivatives with chlorine as heteroatom property-activity relationships. Let us point out
The nine compounds not considered here involve the difficulties in counting the parameters used in
bromine, fluorine, nitrogen and oxygen and offer such analyses. A lack of information on the de-
too small a sample to allow one to determine grees of freedom (i.e the number of independent
empirically the graph theoretical parameters that parameters) involved leads to ambiguities about
discriminate between these heteroatoms. The the reported statistics. Part of the problem
QSAR parameters considered by Timmermans and originates with difficulties in tracing underlying
Van Zwieten include: assumptions and the number of parameters used
(a) d pK, which refers the substituent effect on there. For instance, what variant of M) calcula-

the dissociation of the imidazolidines in water tions is used, and what assumptions and ap-
expected to prevail under psychological condi- proximations are involved there? How does one
tions; estimate molecular volume? What is involved in

(b) ir-electron charge densities, from quantum determining the numerical magnitude of the
chemical calculations derived for free bases volume? How does one scale various contribu-
and protonated species; tions? To what extent are selected QSAR parame-

(c) the energies of the highest occupied molecu- ters internally consistent and to what extent are
lar orbital (HOMO) and lowest empty (un- individual parameters independent? Ilow does a
occupied) molecular orbitals (LEMO or change in a choice of one descriptor influence
LUMO), in particular those of protonated changes of other parameters in order to preserve
species were considered as molecular descrip- internal consistency of the model? It may be dif-
toers; ficult to anssser these questions. It is this accumu.

(d) the lowest electronic excitation energies of the lation of many small steps, each perhaps well
molecules (given by the difference of HIOMO defined, which eventually makes it difficult to
and LUMO energies); identify the degrees of freedom used in subsequent

(e) log P' (apparent partition coefficient) from correlations. The situation may be contrasted to
the octanol-01 M phosphate buffer. pH 7.4. the use of graph theoretical descriptors, the nuin-
system; her of which is always known and which are

(f) the hydrophobic constant v" (in fact the sum- defined a priori.
mation over the substitutent r values) adopted The correlations reported by Timmermans and
as a measure of hydrophobic interactions, Van Zwieten 1491 are summarized in Table 1. We

(g) parachor, defined by Sudgen [50] as the prod. gise the statistics and the correlation equation
uct of the molecular volume and the fourth corresponing to a set of 18 methyl and chloro
root of the surface tension, a measure of derivatives which %%c selected from the initial set
molecular size (along the series where surface
tension is constant) perhaps related (via
surface tension) to an overall lipophilic behav. TABLE I
ior of the molecules; Summary of the orrlanons based on eighteen 2.

(h) Taft's steric constant [511. as expanded by (aryhunso)midazomiie compounds having only lionse as
Ilansch 1521. to account for the sterie proper- hetiroatoms
ties; Regression R S

(i) the niolar refractions at the wavelength of the 0546log P-0222(log, p) 0.786 0629
sodium D doublet line. MR as a representa- 00004 (Par) +0 19 Par 5 034 pK

tion of the molecular volume. +2,707 1IOMO+4.994 Eh-15583 0964 0301
Observe the rather lengthy list of molecular -0.717pK-0057 0675 0726

properties, experimental or computed, used in the 0 .1t (Par)' -0003 Par-8 842 0731 0691
search for the structure-activity correlations. This -0885 pK'+6687 ltOMO+7,238 E11+22 651 0.789 0646
kind of QSAR should be termed property-ac- 0 0003 (Pr)

2 
+ 0 096 Par - 0 572 pK - 7 849 0902 0,454

kindof SAR houd betered popety~at1-
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of 27 compounds. The revised correlations gave quite appropriately, renamed by Kier et al. (541 as
slightly better statistics, as expected, in view of the the connectivity index, was designed fron an anal-
fact that now the sample of compounds studied is ysis of selected physicochemical properties of al-
more homogeneous. kanes, Firstly one orders isomers with respect to a

We may briefly summarize the main results of property of interest. Thus, for example, in the ease
Timmermans and Van Zwieten as follows: of hexanes and their boiling points we obtain the

following sequence.
(a) correlation coefficient R of over 0.950 (and 2,2-dimethylbutane < 2,3-dimethylbutane

accompanying standard deviation, S, of less
than 0.350) require five molecular descriptors; < 2-methylpentane < 3-methylpentane

(b) single descriptor, log P (as an indicator of < n-hexane
drug transport processes), gives the correlation By differentiating bond types involved the above
with R - 0.529 (S = 0 864): ordering leads to inequalities, shown below, where

(c) the major single variable of the best correla- (ni, n) represents CC bond type with m and n
tion is d pK. with R -0.482 and S - 0.892: being neighboring carbon atoms:

(d) the best two-parameter correlation involves
parachor (linear and quadratic terms) and in- [(1, 2) + 3(1.4) + (2, 4)] < 14(1.3) + (3. 3))
creases the correlation coefficient to R = 0.656 < [(1, 2) + 2(1.3) + (2.2) + (2, 3)]
(S.- 0 784);

(e) the best three-term expression (based on < 12(1. 2) + (1, 3) + 2(2, 3)]
parachors and d pK,) achieves the somewhat < 12(1.2) + 3(2. 2)]
respectively correlation coefficient of R =
0 853 (S - 0.544). Similar inequalities follow from ordering of other

alkanes. The bond type contributions

Tinimermans and Van Zwicten [491 concluded (1. 2), (1, 3), (1,4), (2, 2), (2, 3). (2, 4), (3, 3).
their study by exanining the role of the hydro.
phobic constant -: and the role of the steric sub- (3. 4) and (4, 4)

stituent parameter. Each case, in a comparison are viewed as unknown variables, which will need
with the best five-parameter correlation, shows a to be determined. Instead of searching for individ-
slightly reduced correlation coefficient (R = 0.912 ual (vi, n) values one finds that a simple al-
and R -0.943. respectively) and an increased gorithm: I/1(n.n) generates an acceptable
standard deviation (S - 0.455 and S = 0.369. re- solution. lence. this single assumption defines
spectively). The traditional QSAR study of bond contributions to the connectivity index [53).
Tinmermans and Van Zwieten well illustrates the It may appear amazing that a simple ad hoc
various choices in multiple regression analysis, mathematical construction, the connectivity index,
resulting in a correlation equations using five de- performs so well. But there ought to be no surprise,
scriptors with a high coefficient of multiple regres. because the index was constructed to be a solution
sion. to an ordering of structures, an ordering which

[low would graph theoretical schemes fare in parallels the relative magnitudes for selected prop.
comparison? erties, The success of the connectivity index is in

its design. One can interpret the Variable bond
weights as relative zontributions of bonds in a

TIECONNELTIVITY INDEX FOR IILEROATO.IS typical molecular additivity, when bonds are dif-
ferentiated according to the number of the nearest

In order to consider the above question we neighbors. The bond types (1, 2), (1, 3) and (1, 4).
have first to consider an adequate graph theoreti- for example, correspond to bonds between primary
cal approach to heteroatoms. The index, initially and secondary, primary and tertiary, and primary
called the branching index 1531 and subsequently, and quaternary carbon atoms, respectively. The
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connectivity index attributes different 'volumes' In Table 2 we illustrate weighted path numbers on
and 'surface' contributions to these different bond a ten-atom common fragment for compounds of
types, simulating the relative volume and surface Fig. 1:
fragment contributions.

9

6 32

WEIGHTED PATt NUMBERS AS MOLECULAR DE- is
SCRIPTORS

which represents a variable fragment of the graph
A single molecular descriptor will not suffice in of clonidine-like molecules The weighting factors

many applications. When extending the basis of for the individual bond types are the same ones
descriptors one can (i) either consider a collection introduced in the definition of the connectivity
of additional, structurally unrelated descriptors or index.
(in) design a number of different but structurally Let us emphasize the wealth of data in Table 2.
related descriptors. The higher connectivity in- Firstly, for each atom separately we obtain path
dices 155] represent an illustration of the latter. sequences. these are the numbers listed so separate
They were defined by extending the bond as a rows. As a sum of atomic path sequences we show
fragment to pairs of bonds and several consecutive in the last row the corresponding sequence for the
bonds as larger molecular fragments. In this way molecule. The first number gives the number of
not only one increases the number of descriptors atoms, but alternatively this can be replaced by
available for regression, but also facilitates the use the 'molecular' zero-order connectivity index of
of sequences as mathematical objects to represent Kier and Hall [3). The second number in the
structures. Other choices of structurally related molecular sequence is the connectivity index,
descriptors include extended connectivities [56), which can be viewed as the molecular path num-
path numbers [571, weighted path numbers [581 ber associated with paths of length one. i.e. bonds
aind distane sums 159). We will use here weighted The successive path counts correspond to higher
path numbers (to be subsequently briefly outlined). connectivity indices, although they differ some-

TABLE 2
Weighted path numbers for a ten-atom fragment of the 2.6-dimethyl denvativ of closnin

Rows gn¢ %vightcd paths tr individu4l itoms, the cst row tobtamd by wmnrung, .torms. ontrnbutwrns) repressi a .hoiastezja
ion of the moltule (molecular fragment) as a uhole.

Atom P8 p2 P) P., PS P. P, Atomic ID

1 0817 0272 0181 0.179 0037 0019 0008 2516
2 1.150 0222 0219 0045 0023 0001 0001 2674
3 I 0.929 0.136 0068 0028 0016 3177
4,8 1.319 0426 0.302 0064 0049 0001 3170
5.7 0.908 0622 0.193 417S 0032 0016 2945
6 I 0408 0372 O01 0082 2953
9.10 0577 0428 0246 0, 75 0037 0029 2497

Molecule Molecular ID

4.788 2.392 1.195 0605 0203 0071 0013 19271

'I
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what in the definition in that here the weight eluding diagonal entries) except on places corre-
factors of the *connecting' atoms are used twice sponding to any pair of connected atoms when the
But that is a mnnor difference that changes the entry is 1. Heteroatom X can be discriminated by
results quantitatively, not qualitatively, and we settting the corresponding diagonal elements oi a
may continue to refer to these as 'higher' connec- matnx to be different from zero. This is fully
tivity indices. In addition to the quantities already analogous to the treatment of heteroatoms in
mentioned we may also consider adding atomic HMO theory. Spialter [64,651, attempted in this
contributions, not along columns as was the case way to record heterosystems in chemical docu-
with deriving the molecular pat% numbers, but mentation, and even earlier Balandin 1661 used the
along the rows. We then obtain a characteristic same technique to identify heteroatoms Dugundji
number for each atom, the so-called atomic identi- and Ugi [67], in a similar manner, recorded the
fication (ID) number. As one can see these atomic number of valence electrons of non-carbon atoms
ID numbers are sensitive to the atomic environ- in their BE (bond-electron) matrices used to fol-
ment and tend to be different for atoms even in low chemical reactions. Thus it appears natural to
highly smular atomic environments Howevor, sig- use variable diagonal entry to discriminate among
nificantly, smaller changes in the environ.ient are heteroatoms, a practice which apparently is not
accompanied by smaller variations in atomic ID novel.
numbers. By adding all atomic ID numbers (or In Table 3 we list a weighted path numbers for
alternatively by adding the molecular path num- the same ten-atom fragment of clonidine, but now
bees, proper account of the role of the zero-con- the atoms 9 and 10, corresponding to chlorines in
nectivity index), one obtains the molecular ID compound 1. have been assigned a non-zero diag-
number [601 These molecular ID numbers, which onal entry in the adjacency matrix The ALL-
in a way encode the molecular volume, have al- PATH program recognizes the non-zero diagonal
ready been used in some structure-activity cluster- entries and modifies the weighted path count
ings and correlations [58,61). One ought to view accordingly Hence, if we compare Table 2 and
Table 2 as a pool of various molecular descriptors. Table 3 we can observe the differences induced by

Is it possible to incorporate heteroatoms in the two chlorine atoms. Thus, Table 2 represents
some analogous way in the path count schemes? the 2,6.dimethyl derivative, compound 6. while

The quantities in Table 2 were calculated (by a Table 3 corresponds to the 2,6-dicholoro deriva-
program ALL PATH (62,631 from the graph ad- tive, compound 1. In the next section we will
jacem.y matrix, which have zero everywhere (in- consider correlations between the eighteen ins-

TABLE 3

Weighted path numbers for the ten-atom fragment with .hlonne atoms as heteroritom substauents libets 9. 10). ronespondag to the
2.5-dchloro denvatsi of clomdne

Obsceve a simlarty betrea the corresponding path numbers of Tables 2 and 3

Atom p) p2  P, P. P5 P6 P Atomic ID

0816 0272 0181 0191 0037 0019 0008 2529
2 t150 0222 0234 0045 0023 0009 0006 2690
3 I 0,973 0136 0065 0028 0018 3225
4.8 1387 0426 0310 0064 0052 0005 0004 3240
5.7 0908 0650 0193 0t185 0032 0017 2 9s4
6 I 0408 0400 0091 0085 2984
9.10 0646 0479 0275 0200 0042 0034 0003 2680

Molecule Molecular ID

4924 2493 1254 0647 0212 0078 0014 19625
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idazolidines of Fig. I using the graph theoretical TABLE4

descriptors from Table 2 and Table 3, and similar Leading connectivity indices for the eighteen wompounds con-

data for other compounds of interest. sidered

No Compound i-X 2-X 3-X

1 2,6-Ct2 4278 2015 0978

GRAPt THEORETICAL CORRELATION OF THE AC- 2 2.4,6-Cl, 4418 2120 0969

TIVITIES OF IMIDAZOLIDINES 3 2.3-C12 4278 2015 0963
4 2.6-Ct,-4-Me 4384 2 092 0957
5 2-Ct-S-Me 4244 1 9S9 0964

The emphasis in this article is on advantages of 6 26-Me, 4210 1964 0949
graph theoretical descriptors in comparison with 7 2.4-C1t 4262 2036 0982
the traditional QSAR descriptors. Table 3 il- 8 2-CI.4.e 4228 2008 0970
lustrates how a graph theoretical scheme naturally 9 2.4 C,-6-Me 4384 2095 0955

but the task of finding 10 2.4.Me2.6-Ct 4350 2067 0944
incorporates heteroatoms, it 2.5.C12 4262 2036 0982
optimal 'diagonal' contributions for various her- 12 2-Ct 4122 1939 0982
eroatoms or even the same heteroatom in different 13 2.6.Me2-4-C1 4350 2069 0942
environments remains to be studied in greater 14 2-Me-4-Ct 4228 2011 0968
detail. The prelinnary exa, ,,nation reveals that I5 2,4,6-NIe3 4316 2 -042 0931
positive digonal elements decrease the path 16 2,4.e, t 4194 1983 0956

17 2-Mr 4088 1914 0966

counts while negative elements increase the mag- 18 Unsubstituted 3966 1869 0979
nitude of the weighted path counts This suffices
for our purpose of generating preliminary connec-
tivity indices that discriminate positional isomers
with variable heteroatom location. In Table 4 we
listed the leading connectivity indices for the eigh-
teen comp-,nds of interest as derived by the
ALLPATH program with assumed X = - 0.20 en- variables to a minimum. In order to emphasize the
try for each chlorine present. In addition there is role of substitution pattern, because we are dealing
also an option to change C-Cl bond weights but with compounds of different number of atoms, we
at this stage %%e decided to keep the number of focused attention on the eight-atom skeleton

2 og I/EO,0,

a B00 B

400 410 420 43C? 440
0

-2 0

Fig. 2, Plot of ihe wonnrttiy index dgms1 kg I, ED Open iartes indisuti soipounds without sihonc subiituents. singly srosd
rdes indiw.i compounds with onitn1 substituted sthluri. doubly russed inles edintt ivmpound with tIwo 0ihonne.. and iripl

crossed cirele itndicaic, the compound with ihroe chlonne heteroatomns

____
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shown below, which is common to all the struc- sion of the molecular weight, which increases with
tures and is sensitive to substitutions the number of substituted chlorines, will improve

the correlation. Alternatively, we may consider the
count of chlorines (which parallels molecular
weight as a descriptor) to improve the correlation)
This observation leads to the following two-de-
scriptor correlation equation:

The reported connectivity indices in Table 4 there-
fore represent fragment connectivities, i e they log(l/ED) = 3.508X + 0.440N - 15.0101
include only contributions from the above coin- with R = 0.764 and S = 0 656, where N is 0, 1 or
mon eight atoms. The computed path numbers, 2. The improvement is not dramatic, but the corre-
however, involve from eight to eleven atoms, de- lation is significantly better than the quadratic
pending on the substitution pattern. In this way correlation based on log P' (with R = 0.647 and
we have separated the combined influences of the S = 0.793) or the quadratic correlation based on
two structural features - the size and the shape parachor (with R = 0.656 and S = 0 784), which
- which will enable us to focus attention on the similarly involve three terms in the correlation
'shape', i.e. the substitution pattern, and its role equations. Hence, again, we see that simple graph
on the relative bioactivities of the compounds theoretical considerations produce visibly better

With a single graph theoretical descnptor, the results.
connectivity index 1 - X of Table 4, we obtain the Another look at the compounds which show a
correlation shown in Fig. 2. The correlation coeffi- greater departure from the correlation line in Fig
cient is R = 0.690 and the standard error estimate 2 suggests that bond dipoles may play some role.
is S = 0.712 This is visibly better than the best Among the isomers having a same number of
single property-based QSAR correlation, the C-Cl bonds those with bonds in the ortho posi-
log P', with R - 0.529 and S = 0.846 The corre- lion have greater activity than those with C-Cl
lation equation bonds in Anet or para positions Consequently,
log(l/ED) = 5 781X - 24.1643 one can visualise the resultant dipole vectors as

point.g to the direction of the 'shift' of the points
explains almost 50% of the variance in hypoten. in the correlation By using the magnitudes D of
sive activity and equally shows that bond additiv- the dipoles (which are sensitive to the substitution
ity (implied in the connectivity index) is not the mode) as a parameter we also expect to improve
only aspect of this particular structure-activity the struture-actisity correlation Implemeniation
relationship. The above may be contrasted with of this observation leads to the expression.
the log P' correlation. which account for only 30% Iog(l/ED) - 5.854X+ 0 679D - 24.508
of the variance in hypotensive activity and shows
that lipophilic behaviour is not the dominant con- with R - 0.799 and S = 0 611 This particular
tributor to the biolog.,al activity of clonidine-like two-descnptor correlation compares well with the
imidazolidines. two.descriptor correlation of Tiinmernians and

What is the next best descriptor that will im- Zwieten.
prove the correlation? A way to proceed is to The graph theoretical approaches not only have
examine the correlation predictions more closely their quantitative value, they also provide novel
and see if a well characterized subset of the com- qualitative structaral insights. In the above case
pounds show greatr departure from the correla. we identified molecular weight and bcnd dipoles
tion, By inspection of Fig. 2, which gives a plot of as potentially useful descriptors. Nevertheless, se
log(II ED) against the connectivity index, we ob- should add 'hat the quantitative results, imires-
serve the average values of log(I/ED) signifi- sive as they are, are not necessarily the best which
cantly increase with the number of chlonne atoms the particular graph theoretical approach ma
as substitutents. Hence we may expect that inclu- yield. We have not attempted to optimize our

L_,L
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heteroatom parameter (the diagonal entry' in the TABLE5
associated adjacency matrix) That there is a room Predicted antahypertensive actties based on the connecstity
for improvement can be seen by considering rndices I - X. 2- X and 3- X derived from multiple regres-

another choice for diagonal entry parameter of son and eeoss.sahdatzon

chlorine. The value of x = -0.40 gives a better No Compound Regression Cross. Expert.

(single descriptor) correlation: log(1/ED) - vaidation ment
4.860X- 20.531 with R - 0.750 and S = 0.651, as t 2.6-Ct, 2034 1977 214
compared to the correlation derived with x 2 2,4.6-C l, 1460 1478 141

-020 (R=0690 and S-0.712). This result, 3 2,3-CI2 1298 1286 137

which is also not optimal, shows that a single 5 2,6-NCt.4.Me 1 61 1 035 1225 2-Cl-6-Me I 372 1 451 1 12
graph theoretical descriptor can capture dominant 6 2,6.Mc 2  0697 0627 085
structural features well. If a single graph theoreti- 7 2.4.C12  0566 0 536 068
cal descriptor can produce correlations which are 8 2-Ct-4.Me 0111 0061 068
better than alternatives using two and more tradi- 9 2.4-Cl6.Me 0850 0901 057

tional descriptors, it seems worthwhile to explore 10 2.4.Me.6.CI 0459 0448 052
It 2.5-Ct2  058 06017 032

further the possibilities based on graph theoretical 12 7CI 0259 0285 0 15
descriptors. Recently an approach to the construc- 13 z.6.Me.4.CI 0249 0300 004

lion of better single descriptors has been consid- 14 2-Me-4.CI -0080 -0084 -005

ered (68! It appears that further improvements in 15 2,4.6-Me, -0150 -0 193 -007
slrui.ture-properly and structure-activiy studies 16 2 4.Meo -0532 -0527 -056

ytuuuprpry17 2-Me - S -0406 -061
are possible by following similar promising direc- i8 Unsubsututed -2076 -2047 -210
tions in modifying the functional dependence of
the topological indices used Traditional QSAR R 09773 09676

approaches lack this flexibility by virtue of being

limited to molecular properties as a source of
structural characterizations

as 2 - X and corresponding to the conneettvtty
index of second order) and paths of length three

MULTIPLE REGRLSSION USING IIGHIER CONNEiC- (denoted as 3 - X and corresponding to connec-
TIVITIES tivity indices of order three). The three connectiv-

ity indices I - X, 2 - X and 3 - X have not been
A single best descritor allows one to model a selected as the best three from a pool of possible

structure -activity study by considering the role of indices, their reciprocal and other combinations,
various 'correction' factors, as outlined above. An as sometimes has been the case in multiple regres-
alternative approach is to use 'higher-order' de- sion analyses. They have rather been selected as
scriptors, such as higher-order connectivities, paths the leading members of a sequece of weighted
of longer length, extended connectivitics. etc. If, paths (higher connectivitics).
for a collection of compounds considered, such Connectivity indices I - X, 2 - X and 3 - X
descriptors are not strongly intercorrelated they lead to quite impressive regressions A stated
may span the structure space adequately, and earlier, I - X already accounts for close to 50% of
hence produce impressive correlations. We want the variance. In combination with 2 - A the two-
to end this exposition by showing correlations of descriptor characterization of the compounds
antihypertensive activities of clonidine-like in- (three-parameter correlation equation) account for
idazolines using longer (weighted) paths involving 60% of the variance (correlation coefficient R
the particular encoding of chlorine heteroatoms. 0 781). This is better than any two-paranieter cor-
In Table 5 we collected the information on the relation, based on traditional QSAR parameters,
correlations using paths of length one (the conne - even including correlations using bond dipoles or
tivity index I - X), paths of length two (denoted molecular weights as descriptors in conjunction
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with the connectivity index. The improvement by with physicochemical indices in a single study is
including 2 - X to the already existing correlation practical.
based on I - X is substantial, even if not dramatic.
In part a reason for the achievement of only a
partial improvement is that 1 - X has already COMBINED USE OF PHYSICOCHEMICAL AND GRAPt
absorbed much of the correlation variance. How- THEORETICAL DESCRIPTORS
ever, if ve now include 3 - X, in addition to 1 - X
and 2 - X, we obtain a correlation equation which While the traditional QSAR parameters may
acounts for 95.5% of the variance (a correlation have apparent advantages in some applications in
coefficient of 0 977). The regression is also accom- this particular study, where several factors con-
panied by an impressive reduction of the standard tribute to the overall molecular behavior, it is
deviation to S = 0,223. This particular result is difficult even to speculate on the importance of
better than a correlation based on four and five individual physicochemical descriptors On the
descnptors using any combination of apparently other hand graph theoretical descriptors can not
plausible physicochemical descnptors, such as only do the same job, they can accomplish it

log P. d pK. , parachor. Taft's stenc constants, impressively better. Successful graph theoretical
molar refractions etc., supplemented by quantum correlations, of course, do not signal the termina-
chemical parameters, such as HOMO and LUMO tlion, or even a diminution of the importance of
parameters and their derivatives, traditional approaches; rather, they indicate the

The central finding - that the X indices pro- beginning of a novel alternative, sending a signal
vide a superior correlation of the antlhypertensive for attention. Certainly, one needs to accumulate
donidine data for the eighteen compounds chosen more experiene and additional insights into the
- appear to be correct, providing that a chance potential of the outlined approach. We do not
correlation does not play a role. In order to con- even claim any general suitability of the approach
firm this finding we undertook to examine whether outlined for the study of structure-activity phe-
the result would be upheld by cross-validation. In nomena involving heteroatoms. Even less do we
Table 5 we also report the outcome of the cross- want to leave the impression that the traditional
validation, ,hinh leads to the overall coefficient of approahes have no considerable, as yet untapped,
c.orrelation of 0.968 with the standard error of potential along with graph theoretical approaches
estimate of 0.247. The result is particularly stnk- in QSAR. In fact, we believe that combined ap-
ing for this data set, because there are two extreme proaches using molecular properties, quantum
potency values which would be expected to give chemical parameters and well selected graph theo-
mud trouble in cross-validation. The suspicion retical descriptors are likely not only to produce
,ith which many people in the QSAR community superior correlations but are likely to do so in a
regard graph theoretical approaches is based on most efficient way. While this paper has demon-
misunderstandings of graphs, on a feeling that strated some advantages of mathematical descrip-
theile is no phwsicoUcemtal basis for conne tivity tors as opposed to physico liemnial descriptors in
correlations. Sim.e "receptors surely do not per- this particular application, the advocation of one
form edge counting", skeptics feel that correla. set of descriptors does not preclude the use of
tions with graph indices which do exist are actu- other sets of descriptors. Moreover, any claim to a
all) a consequence of .orrelations with some more general superiority of one kind of descriptors over
Imeaningful' physicochemical propert) which the another kind, even if based on a larger body of
graph indices happen to correlate with. However, results, overlooks the possibility that yet unex-
the result reported here cannot be understood in plored des.riptors (properties or graph invariants)
this way. With new statistical methods, such as the may surpass in quality those considered hitherto
partial least-squares method, inclusion of many It seems that the most pragmatic approach at this
sets of highly intercorrelated parameters is no time is to combine physicochemical descriptors
longer a problem, and combining graph indices with graph theoretical descriptors, a course which
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already has received some support [69-71). This TABLE7
then represents a generalization of a more coin- To-parameter correlations combining the connecwiity index
mon current practice in which physicochemical and selected physicochenmal descrptors

descriptors are combined with quantum chemical Regression R S
descriptors. Such generalized approaches are likely 4.154 X- 0 489 pK, - 17.574 0808 0599

to result not only in better but also in simpler 2607X+o00logP-10465 0786 0628
correlations than the approaches using one type of 6181 X-2212HOMO-51 654 0782 0633
descriptor only, if used separately. 5604 X+ 1.988 EE-38 636 0751 0671

To illustrate a relationship between properties 11052 X - 385 e-44 661 0.701 0725
and connectivitics as descriptors for the eighteen
compounds considered we report in Table 6 corre-
lations using traditional QSAR descriptors against additivities implied by the connectivity index.
the connectivity index X. Such correlations may Hence, they illustrate descriptors which, figura-
assist one in selecting graph theoretical and tively speaking, are 'orthogonal' to the connectiv-
physicochemical descriptors in 'admixture'. We ity index. They supply additional 'directions' in
find that X and parachor produce quite a good correlations if, on their own, they show some
correlation (R = 0 965), not quite unexpectedly, in correlation with a property considered We should
view of the interpretation of the parachor in terms emphasize that use of R, the coefficient of regres-
of molecular surface. The magnitudes "' molecu- sion, or R

2
, the coefficient of determination, as a

lar surface area are well simulated by the relative sole criterion for a quality of a regression, as is
magnitudes of the connectivity index [52]. Also a known, is deficient and can be downright mislead-
quite good correlation (with R = 0.950) was ob- ing. Hence conclusions based on R or R

2 
have to

tamed between X and hydrophobic constants be taken with due reservation. It is desirable to
(summation over the substituent r values). The substantiate such correlations with other indepen-
correlation between X and the Taft substiltuent dent statistical criteria, such as are given by niag-
sterc constants produced a fair correlation, not as nitudes of the standard errors, F-tests, cross-vah-
good as hydrophobic constants or parachor, but dation, etc.
still suggesting that over 75% variance is accounted In Table 7 we show several 'mixed' correlations
for by X (R = 0.881). On the other hand, the based on the connectivity index X and a selected
correlation between X and quantum chemical property as descriptors. We see that when X is
lIOMO parameters (as well as the derived EE combined with quantum chemical descriptors
parameters) are nonexistent (R = 0.114 and R - HOMO and EE fair correlations result (R - 0.782
0070, respectively). These molecular orbital de. and R =0.751, respectively). Comparisons of the
scriptors (for the set of structures considered) have correlations in Table 6 and Table 7 give insight
apparently 'nothing in common' with the bond into the role that some physicocheinical descrip-

tors play in multiple regressions We see that there
TABLE 6 is a fair, but not satisfactory, correlation between

Correlasons beteen the various physicoctheneat descnptors log P' and X, the correlation coefficient being
and the connectvity indices for the eightecn coipownds con. R = 0.715. Combined log P' and X then give a

dnrt better correlation, though the improvement ap-

Descriptor R S Ceettiesent Constant pears not to be dramatic (R - 0.786). Because

Parachor 0965 8.92 2809 -10328 log P' alone does not perform well (R - 0.529) it
0 950 0.169 4397 - 17.365 seems, then, that in this paricular application to

C, 0881 0463 -7350 2893 clonidine-like compounds, log P' owes its correla-
tog P 0.715 0.734 6397 -27603 tion 'poser' to partial parallelism with X. How-
pK. 0.430 0837 -3392 13.757 ever, the parts in which X differ from log P'
ItOMO 0.114 0.161 0.158 -12330 appear relevant for the particular correlation. The
Eli 0071 0.146 0099 72519 situation can be contrasted to the use of d pK as

L
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an additioaal physicochemical descriptor We see tended for those who continue to be skeptical
that d pK combined with X produces a good regarding graph theoretical methods:
correlation (R , 0 808), the improvement in the the experimenter eannot afford to close his
correlation, however, in this case is more substan-tialThi shuldnotbe urpisig mvie ofthe eyes to a new discovery, obtained from another
tial This should not be surprising in view of the point of view, which will not fit his own ideas, nor
0.430) It implies a lesser 'duplication' between X must he treat it as unimportant, if not incorrect

and d pK on one side, while the improved corre- One should not need to add that graph theoret-
lation coefficient in the combined regression points ical indiLes - being mathematical constructions
to a role of d pK, which alone shows poor corre- - cannot be incorrect! They can be useful or
lation (R = 0.482), as complementary descriptor, useles, but not incorrect, and we leave it to readers
rather than competitive to X, i.e. they differ in to decide which is the case
structurally relevant features.
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The hgand.field regime defines the domain of apphcablhty and underlying reasons for the empinsl su,,cess ofl hgand-field
analysis Flus article revies the structural connections between quantum chemistry at large and the phenomenology of the
hgand-tirld method These connections provide a sound basis for the ermial interpretation of ligand field parameters Difference-
bet"een hgand.feld and molecuta.iobital approaches are identified

TIlE LIGAND-FIELD FORMALISM (say) are calculated by diagonalhzation of the ap-

Ligand-field theory (LFI) addresses the spec- propriate d (f) basis under the crystal-field Ham.

troscopie and paramagnetic properties associated itomian,

with open d or f electron shells in transition-metal X N

complexes. It is parametric. We require of the .c r r + Vc. (1)
models of such a theory that all appropriate deec- 0i

tronic properties be reproduced essentially in which two-electron energies are accounted for
quantitatively for object systems regardless of by the Coulomb operator and one-electron en-
molecular geometry, coordination number, or d' ergies by the crystal-field potential, VCF Various
(I") configuration, on the same footing, and that models of the electrostatic, classical potential have
the optimized parameters affording that reproduc- been entertained, ranging from ligands as point-
tion be relatable, both empirically and structur- charges or point-dipoles to spatially extended
ally, to chemical concepts established by other charge distributions. In each case, all operators of
means. IHundreds of ligand-field analyses of eq. (1) are explicit, involving real bond lengths
paramagnetic susceptibility, electron-spin-reso- and charges. The d (f) basis is equally explicit
nance g values, 'd-d' and 'f.f' transition energies, fot example one might employ the 3d functions of
intensity distributions, and their natural or mag- Clementi et al. [1] for cobalt as a dipositive cation
netic circular dichroism have satisfied these While the qualitative, symmetry aspects of CFT
criteria. It is crucial to observe that, within its remain as useful as ever, the quantitative predict-
proper or 'regime', LFT works, because, at first ions of splitting parameters and accounts of the
sight, it ought not to. spectrochemical series, for example, were recog.

LFT developed from crystal.field theory (CFT). nized to be hopeless almost from the beginning
Within that approach, d (I) electron energies 1935 marks the year in which Van Vleck [2,3

0169.7439/91/03 50 0 1991 - Elsevier Science Publishers B V
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resolved intriguing conflicts in the contemporary for the interpretation of its parameters. These
literature and introduced amendments to CFT interrelated aims are best reviewed separately, first
that defined the birth of LFT. In essence, in terms of a many-electron basis and then with
acknowledging the covalency that undoubtedly ex- respect to the one-electron matrix elements that
ists in all transition-metal complexes, he proposed define ligand-field parameters
LFT as an isomorphous approach to CFT in which
the operators of the ligand-field Hamiltonian,

PROJECTION ONTO A d ORBITAL BASTS
N-elr F, U0v. J) + VLF (2)
,<. The focus on a d or f basis is sharpened by a

review of Lbwdin's partitioning theory (8). The
are to be taken as effective operators and ligand- Schrodinger equation for some full many-electron
field splittings to be regarded as parameters. To- problem is written.
day, we refer to the two-electron energies as com- Y+ = E+ (3)
puted with an effective, or screened, Coulomb
operator, U(i, j). and the one-electron energies as Expanding the eigenvectors within a freely chosen
ligand-field parameters of the effective ligand-field basis (' ) of infinite size,
potential, VLF It is also to be recognized that the
only part of the basis functions that is employed ' = Ec, s4s , (C, I Q-',1 (4)
explicitly in ligand-field calculations is the angular A.
property. Matrix elements of functions built from and defining
pure d (1-2) orf (/ 3) orbitals under 

1
Y"F are lt,= (04 1 )(5)

manipulated within LFT: any differences between
the first and second row of the d block, for we obtain the Heisenberg matrix representation of
example, are left to emerge in the parameters of eq. (3):
the system. Altogether, therefore, in LFT we em- lie = Ec (6)
ploy effective operators within a basis whose ra-
dial character is left implicit. One immediate con- Suppose we partition the basis { (0) into two
sequence of these differences between CFT and groups, a and b of dimension N. and Nb, respec-
LFT is the change from (calculable) free-ion, tively. N. will be infinitely large, in general The
two-electron energies - like B. and CD, using infinitely numerous eqs (6) may be partitioned
Racah's notation - to parametric quantities like similarly:
B, C and the nephelauxetic effect. Htc + I ibeb = Ec, (7)

LFT and CFT are isomorphous in the way they
formally separate one- and two-electron effects ht4c,s + ttbbC = E b  (8)
and by their operation within a pure d (or f) where c. is a vector of dimension N. and It., a
basis No explicit recognition is made of metal s square matrix of that dimension The vector c,
or p functions, or of ligand orbitals. They are thus and matrix Ifbb are both of (infinite) dimension.
quite unlike molecular-orbital (MO) theory. De- li.b is rectangular. Provided the inverse may be
spite Van Vleck's illustration 121 of the effects of defined, we rewrite eq. (8) as
eovalency upon splitting factors by reference to
MO theory in his famous 1935 paper, it is quite c, - (E. Ib ,- Il,,)-1i1lac (9)
incorrect to ,,iew LFT as MO theory applied to and substitute it into eq. (7) to give
transttion.meta, complexes. LFT and MO theory -I
do not map onto one another. Over the past ten llH..c + ila,(E' I bb- li,0 ilaeo Eea (10)
years, Woolley and Gerloch (4-71 resolved to un- This comprises a set of N, equations of the form
cover the underlying reasons for the successes of
LFT and so to provide a defensible physical basis H'..c. = EeC (11)
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with We can, for example, make the identity

l_ - H_ +H(E. lbb-Hbb)H'tb. (12) E, <''l"l'',) (oI1-" 1Y) (19)

where 1 is a unit matrix of dimension N X Nb. I I < >

Solution of the secular determinantal equation, for the ith eigenvalue. Here we recognize that
such is the tactic of LFT if we take (AI as

,- El,, -0 (13) functions built from pure d(f) orbitals and Jl" as

yields N eigensolutions whose energies are identi- X-LF
cally equal to N,, eigenvalues of eq. (3) with elgen- ( 

'
i 'v LP (20)

vectors expressed as (finite) combinations of the E- _ Ia I.(
sub-basis ((D').

The same formal manipulations may be ex- However, i of eq. (18) is an energy-dependent
pressed within the Schrodinger representation [4,71 operator so that the identities represented by eq
by defining a projection operator P, onto the (19) are different for each eigensoluton (each i),
subspace (40): that is XI in eq. (19) is different for each solution.

N. By contrast, the procedures of LFT are such that

P.= 14, )(D', I (14) one implicitly considers one and the same effec-
tive operator .;"LF throughout the manifold of
d-based states that co-define the 'ligand-field reg-

together with Q, onto the orthogonal, complemen- ime' Were it otherwise, one would not exploit a
tary subspace (0'): single set of parameters (matrix elements of Li,)

Qb= - P. (15) throughout the regime And the whole point of the
ligand-field parametric approach is to account for

and thence by wnstruction of a finite-dimensional the splittings and associated propeities) of the
Schrddinger equation, manifold of d (f) states simultaneously with one

set of variables. So here is the root of one's
(.F'- E)'" -0 (16) surprise that LFT works. That it does indeed work
with - that one may employ some mean higand-field

Hamiltonian and thence a mean parameter set
.T''=f+ A .7P(E) (17) with remarkably consistent efficacy - must be
where attributed to Nature providing suitable and par-

ticular circumstances Their provision is not within

A .,(E) Q5 ( E.Q,- Q5,"Qi,)-'Q,I" (18) the power of the user.
Rather similar circumstances ensure the success

We recognize, of course, that the formal mampu- of r electron theory in delocalized organic sys-
lations that produced eqs. (16)-(tS) involve no tems. There, one projects the many-electron prob-
approximation of the full many-electron problem lem onto a subspace of v functions No explicit
(eq. (3)) whatewer. They merely project the in- reference is made to the a bonding framework or
finitely large problem onto a finite basis ("V) atomic core functions. In the manner of eq (18),
while 'folding in' all contributions from the corn- these are folded into an effective, mean Hamilto-
plementary subspace (4') into the operator nian. Matrix elements of that mean Hamiltonian
A.'(E). Furthermore, this reformulation does are parameterized in the Huckel model by the
nothing to assist the solution of the many-electron so-sailed Coulomb and resonance integrals, a and
Schrodinger equation, for the computation of Pt. So LFT is to transition-metal chemistry what ir
AX(E) is every bit as formidable a task as the electron theory is to delocalized organic systems.
original problem. It can, however, suggest a useful That both models work so well in their own do-
avenue for approximation. mains is to be ascribed to the functions of their
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of an effective removal of the d functions from

U) the valence shell. This is proposed strictly as a

'zeroth order' viewpoint, for some mixing with ,he

d orbital takes places, as evidenced for example by

the (small) breakdown of Laporte's rule for 'd-d'

intensities. Furthermore, this separation is pro-
() 4, posed for Werner-type complexes - those involv-

--. ing metals in higher oxidation states and which
form suitable objects for ligand-field study - but

not for carbonyl chemistry or low-oxidation state

Fig, I Radial wavefunctions for (a) Werner-iype complexes complexes. Radial forms of 3d, 4s and 4p fune-

and (b)low~odaton-state complexe of the fir'st transo tions are sketched in Fig. I for both types of
scnm complex. The view we take here of the Werner-type

systems is that, rather like the way the 4f orbitals

in lanthanide(ll) complexes are well buried and

appropriate subspaces being largely uncoupled uninvolved in bonding, the d-orbitals are rela-

from all else, tively 'inner' functions that overlap very poorly

with functions offered by the ligands Chemically,

this view accords well with the stability of open d

THE CHEMICAL SIGNIFICANCE Of: TlE LF F- shells in these systems consider, for example, the

FrICACY absence of free-radical behaviour of unpaired elec-

trons in such complexes By contrast, the much

In chensical terms, one sees that natural 'sep- greater mixing between d, s and p orbitals in the

aration' of the d basis in transiion-me:al com- more expanded electron clouds of very low-oxida-

plexes from the complementary subspace in terms tion state complexes define a valence shell with all

xa

s/p

L mean d obit

group funciton b

Xt --- Xb

bond orbital

(a) (b)

Fig. 2 View of the bonding is tigher.oxidation.state transuton.metai complexes as mnvolning two notional steps (a) pnmary bond

formaion between metal and complete group of igands (b) scondary perturbation of the mean d orbitals by bond orbials
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nine metal orbitals and chemistry dominated by quite different approach defines a basis which
the 18-electron rule. includes some account of both exchange and cor-

We therefore commend a view [9) of electron relation effects. Subsequent computation of
interactions in Werner-type complexes as involv- many-electron molecular properties in terms of
ing two notional steps In the pnmary step, firm the vanous orbital bases require varying - and
bonds between metal and ligands are formed by usually extremely extensive - 'corrections' to
overlap of metal s and/or p orbitals together provide an acceptable account of all exchange and
with appropriate ligand functions. The second, or correlation.
smaller, perturbation is the interaction of the d In one sense, however, there exists a 'best'
shell with the bonding functions so formed, as choice of orbital basis which, apart from trivial
sketched in Fig. 2 LFT and the experimental unitary transformations, is unique That such a
properties it addresses are to be seen as part of choice exists is established by density functional
this second step. Of course, the very interactive theory [10,11], the central theorem of which shows
nature of this process means that while d orbitals that there exists a set of orbitals ({} for the
energies and d electron distributions are affected system ground state tront which one may compute
by the bonding electrons, the bond orbitals are the exact total electron density simple by forming
affected by the d electrons Fig. 2 is to be seen as the sum /'* over populated orbitals. no further
the end product of such a cyclic process In this 'corrections' are required. Unfortunately, the theo-
way, the exigencies of the electroneutrality princi- rem provides no practical help in calculating what
pie, for example, will have been satisfied and these 'best orbitals' are, so the many-electron
thence probed or reflected by the effects upon the problem remains as difficult as ever. However,
d orbitals that we analyse by LFT. their existence provides the basis of a structural

analysis of a model like LFT.
Let us suppose we have the form of the poten-

ONE-ELECTRON LIGAND-FIELD PARAMETERS tial energy operator in eq (21) that leads to the

Parameters of the effective ligand-field poten. 'best orbitals' for the system. it takes the form of

tial are one-electron integrals. In order to gauge a functional of the total electron density p:

their chemical significance we review an attempt U= U(p) (22)
to forge a link between one-electron theory and
the many-electron formalisms above. and, for the ground state at least, the one-electron

One-ectron theory begins with the selection of Hamiltonian (eq. (21)) defines the solution to the

a basis The total freedom available in making this given problem entirely. Now we must recall that

choice is not limited to the technical question of the ligand-field procedures and eq. (2) explicitly

preferring hydrogenic functions to Slater-type separate d-d interactions from all others In

orbitals (STOs) or to Gaussians but includes the mimicing this artificial but established structure of

extent to which exchange and correlation effects LFT, we define a new potential energy operator V

are included at the outset. The basis functions are as a functional of the total electron density ninus
that of the d electrns'

defined as cigenfunctions of the one-electron

Hamiltonian, V= U(p - Pd) (23)
X' T+ U (21) That d electron density remains to be defined,
where T is the usual kinetic energy Laplacian and cyclically, in a moment. We thus construct an
U is some form of potential energy operator. In orbital basis of ligand-field orbitals (LFO) as no-
MO calculations, various forms of U have been tional solutions to the one-election lamiltonian,
adopted: in early Hartree computations U ex-
cluded all reference to exchange and correlation;
in Hartree-Fock, a particular scheme for inclu- The LFO is then expressed as a linear combina-
sion of exchange is included, in X, calculations, a tion of fragment orbitals, rather as molecular

Il
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orbitals may be expanded in the linear combina- ting one-electron ligand-field parameters through
tion of atomic orbitals (LCAO) system However, the relationship
the fragment orbitals are chosen here in a differ-
ent way We divide up V into spherical and (OaIVLF 14")=( LrOI'"i'P'LO) (29)
asphencal parts, (V) and V', respectively. However, little chemical transparency would de-
V= (V> + V, (25) rive from a study of this relationship, for the

LFOs refer to the molecule as a whole At this

Then, solutions of the mean one-electron Harmlto- point, one recognizes that one of the most power-
man, Y(0), ful ideas throughout chemistry is the notion of the

functional group. The power of modern ligand.
,.(0)0- (T+ (V))Oe = (26) field analysis is only realized when this notion is
take the usual central-field form, blended with the theoretical structure we have

outlined above: this blend defines so-called cellu-
0 = R(,-)Y.(O, q ) (27) lar ligand-field (CLF) theory 15,61.

In the CLF model, we consider the space around
so spanning a series of functions ',e may label as the metal as divided up into N contiguous volunmes
s, p. d, f.... We select the d function of the or 'cells'. In general - though there is an im-
mean Hamiltonian .X(o) - which we henceforth portant exception we have no space to discuss
call the mean d orbitals of the system - as one here - we arrange thee cells so as to enclose one
part of the fragment orbitals of the LFO, which M-L ligation each We then consider the total
latter are exact solutions of the hamitoman Yf of molecular effective ligand-field potential as a sim-
eq. (24). So pie sum of all cellular potentials Part of that
"LFO 0a

+ 
0, (28) supposition is the idea that the sources of the

effective potential in any one cell are physically

where 0', represents all other functions required to located in that cell Such is not tle case in CFT,
span the rest of .Y11 as well as X,'t) = V', the for the potential of any point charge is sensed in
aspherical part of Y" It is the electron density in all regions of space. Here we presume that dielec-
these ('d) that is subtracted in the definition of V trIc screening by all electrons in the bonds and
in eq (23) Though notional, the procedures so far cores is such as to render effective hgand-field
are exact. However, to make contact with the potentials spatially local. Consider then the effects
reality of LFT, we must now approximate and of this local effective potential upon the metal
presume that the 'best orbitals' for all excited mean d orbitals in a given cell
ligant-field states (but not for others) are some- After some simple algebra [6.7], which we do
what st mlar to each other and to those of the not review here, analysis of the relationship (29)
ground state in short that the 'mean d orbitals' within a single cell yields an expression for the
are also a mean throughout the ligand-field reg- energy shift of orbital dx as.
ime. Insofar as this assumption is satisfactory, e dx IXId\)
LFT should 'work'; insofar as LFT works, the e ~
assumption may be deemed to be satisfactory. At + dx I

-' l 
I Xx)(xx I

, 
Y"

) 
I d.)

this stage, notice that the precise radial form of + C< I X ) (30)
the mean d orbitals (or, of course, the mean f x -

orbitals if one is dealing with a lanthanide prob- These orbital energies, (e, \, are the parameters of
lem). though unknown to us in practice, is de. the CLF model. Here we write d for the 'a of eq
termined by and for the system in question In this (29) and X for functions built from the 'rest'
connection recall that the radial part of the functions es, of eq. (28). All finctions are referred
ligand-field d basis is left implicit in ligand-field to the local, cellular frame and transform with
procedures. symmetry X with respect to the local pseudosym-

In principle we now have the basis for interpre- metry. e, is the energy of the mean d orbitals and
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ox the mean, or expectation value energy of x\. with the local cellular parameters,
The first term in eq. (30) is called the 'static'
contnbution and the second, the 'dynanic' contri- e? - (

dX I Ir
y dx>; a is, 1-:,, s, (32)

bution It is sufficient for the present illustration where ViF is the effective ligand-field potential in
to focus on an M-L ligation with local C2, pseu- cell c. Taking eq (31) together with eq (30) and
dosymmetry. lower local ligation symmetries have remarks above, we have
been studied in detail and reviewed [12). In C2. e (d l.p(I _ 

IX) 12
symmetry, )s a, ir, or v: 8 interactions are \ - (33)
neglected. It has been shown that for X - o, the x Cd- '

x
i

static contribution is likely to be several times
smaller than the dynamic and, for Xs = vs, that the
static contribution should be negligible. Our dis- yu'ti) IxX )(xx I-y l' )
cussion focuses, then, upon just the dynamic part (d~ - (3
of eq (30). Both total, .X and aspherical, .Y(". x

parts of the Hamiltonian within the given cell Observe, in passing, how the effective ligand-field
transform totally symmetrically and so ensure the operator is energy dependent but that this is ex-
identical symmetry speciation of d\ and Xx in eq plicitly built into the ultimate parameterization.
(30) In C2, symmetry, therefore, a d. orbital Further energy dependence, which is ignored, is
interacts with X. orbitals exclusively, d,, with implicit within the -sign and in the concept of
x. and d, with Xn, as represented in Fig 3. In mean d orbitals.

short, the local cellular potential matrix is diago- Now one can invoke the simple chemical rea-
nal: soning to simplify these sums for the purpose of

d. 1,. d1, interpretation. Thus, we observe that the domi-

with larger numerators and smaller denominators.

d 0 e, 0 (31) .Xt) is the aspherical part of the Hamiltonian

(potential) in that cell and so maximizes awayd~y 0 e.from the metal core. Furthermore, it relates to the

dd XX,.

(a) (b)

d C.4 d.

Xe X

for igand a donors for ligand xs donors for ligand xr acceptors

rig. 3. Second step of Fig. 2 wmthin the lioal CLF si.heme. (a) for v bonding, (b) for isx bonding (r). in ihe plane normal to the
paper. as similar).
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electron density of the complementary set (the mitlo computation of ligand-field properties,
'rest') and so to all occupied 'rest' orbitals. though they could be They have the virtue, how-
Numerators in eq. (33) will therefore be largest ever, of making formal connections between the
when Xx maximizes near these regions. De- phenomenological ligand-field procedures of eq.
nominators will be smallest for X; closest in en- (2) and accepted quantum mechanical principles
ergy to the mean of orbitals. All in all, we expect and of so providing, via eq (33), a defensible basis
e\ to be dominated by those X which are most for parameter interpretation. The whole structure,
proximate to the d orbitals in both space and is of course, predicated on the assertion that the
energy, that is, by the bond orbitals. We conclude ligand-field method 'works'. One further aspect of
that the sources of effective ligand-field potential the cyclic nature of our exposition is that part of
are the bonding electrons and, in this sense, assert the justification for that assertion is provided by
that LFT and observable ligand properties probe the chemical consistency of the interpretations
the underlying chemical bonds that have emerged from scores of CLF analyses

It is worth emphasizing the main points and
cyclic nature of the arguments summarized in this
article Both the many. and one-electron construc-
tions refer to the projection of the full many-elec- TIlM PLACE OF LFT IN COMPUTATIONAL ClEM-
Iron problem onto a d basis. In principle, a ISTRY
complete description of all exchange and correla-
tion effects are built ('folded') into the structure LFT does not have the purpose of providing a
though in practice, of course, averaging is implicit model for the computation of molecular proper-
within the process, manifested first within the ties in general Its domain is restricted to the
mean d orbitals basis and secondly within the spectroscopic and magnetic, electronic properties
interpretation of the e parameters as being of open d or f shells in transition-metal com-
dominated by one or two bond functions. Subse- plexes of the Werner type Furthermore it is para-
quent rationalizations relating empincal e param- metric Nevertheless. its underlying structure is
eters to bond polarization or shape, atomic such as to separate d (f) electron properties from
polarizabilities or whatever, are qualitative and all else and so to probe the chemical bonding that
must be judged by the insight the. bnng to the surely should be its central object By being ex-
enterprise. The schemes discussed above have cused the tasks of bonding theory it leaves to
never been offered as routes for quantitative ab Nature the formidable tasks of accounting for the

exchange and correlation effects that are so vexa-
tious for computational chemistry at large. Bonds
are formed, the electroneutrality principle is satts-

I eem ,n.e fied, the cut and thrust of balancing electron dis-
tribution is enacted: and LFT probes the end

,oF (I I F r result. That is why LFT is so effective in reproduc-

g, ing experiment - far more so titan even the best
t "D0 11,6,1 ab initlo computational techniques - but only

within its proper domain.
m-s Fig. 4 a tree-like scheme is represented (13)

IIWr showing the relationship of one computational
method with another: it is not intended to be

Pxt en.ted Ik, kI comprehensive. It shows for example how conven-

wv,' , 9f~t ttdim'.o~ tional MO schemes do not map onto LFT and
how the angular overlap model (a precursor to the

Anhe Omip Mt&Iat CLF). being an MO scheme at root, is of a quite

Fi 4. Relationships betmncm computitional methods, different ilk to that of the CI.
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Discussion of "The ligand-field regime"
by M. Gerloch

Larry R Falvello

Texas A & M Unwersity Laboratory for Molecular Structure and Bonding, Coi'ege Station,
TX 77843-3255 (USA)

In these remarks I will attempt to place a fuller appreciation of the purpose of chemical
perspective on the validity and the domain of theory Ligand field theory is rigorously valid
applicability of the ligand field theory that Dr within its domain The results are directly perti-
Gerloch has discussed. nent to bonding And perhaps most importantly,

It is easy for a working chemist to be drawn the theory can be used by a chemist 'in the lab'
ashore by computational sirens, since many theo- Now, just what are the results that one obtains?
retical computational methods are so attractive The cellular ligand field theory is used to describe
from a distance and so easily misinterpretable as bonding in mononuclear transition-metal com-
offenng methodology with a hint of permanence. plexes. The parameters describing bonding be-
When stoichiometry was new, chemstry had its tween each ligand and the central metal, are van-
first 'reduce-the-entirety-of-chemistry-to-compu- able, they are adjusted to produce the best agree-
tation' tool With the discovery of quantum mcch- ment between the observed properties of the com-
amcs, the goal of computing molecular properties plex, and those calculated from the theory When
from first principles was conceptually achieved, a computation is finished, the user has a set of
Putting this result into practice has turned out to parameters describing the strengths of the various
be a formidable task, and is today a major area of bonding interactions between ligand and metal
on-going chemical research. And once it has come Each parameter represents a particular component
to fruition, it will face the equally challenging of a particular bond - for example, there will be
requirement of reducing the complex molecular separate parameters for the sigma and pi bonds
orbital descriptions to results in a paradigm useful between each ligand and the central metal (And
to the working chemist. the pt interaction can be further divided by direc-

Ligand field theory, as we know it today, is a tlion, if this is appropriate )
conceptual development purely within the realm The immediate utility of such a scheme is clear
of transition-metal chemistry. It does not belong It is indeed convenient to compare one complex to
to, nor is it derived from, the molecular orbital another in terms of local bonding interactions
theory Like the molecular mechanics used in Most importantly, it is possible within this regime
organic chemistry, today's ligand field theory is to speak of computational results directly in terms
based on concepts derived from a large body of of bonding properties. And there is a lagniappe.
knowledge within its own chemical domain. This sort of calculation is efficient.

Although one may feel a loss of satisfaction at I want to touch on the limitations of ligand
first, in using a bonding theory not derivable from field theory. I think that the cellular ligand field
physical cosmology, the benefits of using the ligand theory, although rather mature in its treatment of
field theory are immediately obvious and allow a the first transition series, can still benefit from

0169-7439/91/03 0 1991 - Elsevier Science Publishers B V,
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further exploration of the second and third rows development unless the theory itself or its realm of
of the d-block, and from a treatment of the f-series applicability changes significantly.
There seems still to be un-tapped potential, both When one considers the panorama of computa-
for development of the theory and for better un- tional chemistry today, it is clear that the variety
derstanding of complexes of t'e heavier elements, of the types of calculation provides one of the
It is difficult to say - even to speculate - field's richest plroperties The theory that Dr.
whether the fundamental concepts underlying Gerloch has described is among those modem
ligand field theory nught usefully be applied to theones that provide useful bonding information
non-Wernerian inorganic chemistry It is ap- to chemists Inorganic chemistry would be poorer
propriate to add at this point that the numerical without it - and, I believe, richer with further
algorithms used in these calculations are both development of it
mature and robust, and should not need major

I
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Discussion of "Maximum entropy as a phasing tool
in macromolecular crystallography"

Larry R, Falvello
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The algorithm that Dr Prince has described son function, a self-convolution of the structureonce again opens the possibility that large-mole- which can be calculated in a phaseless transforma-cule structure determinations will one day be done lion. These methods, as viewed by today's practi-with something approaching the facility now en- tioner, rely on one of more of the following (1) ajoyed only by small-molecule diffractionists non-uniform distribution of electron density; (2)It has been true until quite recently that the the presence of useful symmetry elements, and (3)major practical and theoretical advances in the a priori chemical knowledge of the contents of thescience behind crystallography have been applied asymmetric unit. In practice, these methods ofteneasily and naturally to the purpose of facilitating depend on the skill and experience of the practi-small structure determinations, while macromolec, tioner.ular crystallography has received less benefit. The The phase problem was solved in principle (formeans of solving structures via Patterson synthesis large and small systems) with the discovery of the(1,21, the discovery and development of the direct Hauptman-Karle determinants, the non-negativ-methods (3,41, and the invention of the four-circle ity of which is a necessary consequence of thediffractometer 151 have all had far greater facilitat- non-negativity and atomicity of electron densitying influences on small molecule science than on within a crystal. Of course, solving the problem inlarge. The maximum-entropy methods may come practice was another matter. The determinants, into be an important facilitating influence in macro- their most general form, simply were computa.molecular work. tionally too difficult at the time of their discoveryIn putting a context around the maximum en- to yield a closed form numerical solution for atropy method as a phasing tool, it is worthwhile to given crystal structure. They did, however, yieldexamine the phasing tools used in small-molecule the means for achieving a practical solution to thework, as they would be viewed in importance by a phase problem.practitioner in the field. (Professor Hauptman has The third order determinant, D3 (eq. 1), yieldsdescribed the solution of the theoretical problem an expression on the basis of which certain valuesof determining phases from a set of amplitudes of the combination (0-A + 04 + oh-) can be ruled(6). It is interesting to see that practical and theo- out if the amplitudes are large enough. (In theretical advances can follow different, though re- case of a centrosymmetric crystal the phases ,. arelated, courses.) Before the advent of the direct restricted to values of zero and t, and the theorymethods, one could attempt to determine phases develops slightly differently.) However, even whenby model building, or by application of the Patter- the three-phase combination cannot be de-
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termined with certainty, one can still apply prob- Now, where does the principle of maximum
ability theory to establish an expected distribution entropy fit in with all of this? The important
for its value [7-10]. conceptual property of maximum entropy is that,

like the Hauptman-Karle determinants, it is con-
I U" U' sistent with the analysis of data ansing from a

D3 I= h  UkAj> 0 (1) non-negative electron density distribution 116,171

L U-4 Uh, 1 The principle of maximum entropy has also had a

The application of probability theory thus be- practical problem in common with the de-

comes an important area of work in the phase terminantal equations - useful, widely applicable
problem. The result of prime importance for prac- numerical algorithms for diffraction analysis have

tical application was the tangent formula (w, 2), not appeared as obvious consequences of theory.

%%hich gives an indication for a phase of a reflec- Thus, the use of the dual method that Dr Prince

tion h in terms of the phases and amplitudes of has described here and elsewhere [181 is a practical

other reflections which can participate with h in development which has merited a thorough test.

third-order lauptman-Karle determinants. The The examples we have seen today show the useful-

tangent formula is used in conjunction with its ness of the algorithm While the clarification of

variance (11]. from wich inferences are drawn noisy electron density maps is valuable and itself

about the reliability of the indicated phase would justify full exploration of the method, it is
in the a priori determination of phases that I

EI 11 E., Isn(P, + -Ph, ) believe the maximum entropy method can be most
0, = tan E (2) profoundly exploited.

I EA, 1.k-1 ICoS(' + ~O..) The maximum entropy method has its roots ini probability theory, as Jaynes has explained in
The tangent formula served as the launch pad detail [19] The modern developments by Shannon

for the next important practical developments - [201 (for information theory) and Jaynes represent
the multiple tangent method [121 and the popular the climax of a long conceptual development.
computer program (MULTAN) employing it [13] While closely tied to probability theory, the maxi-
This was the development which finally allowed a mum entropy method, in its most basic notion,
rapid growth in the number of laboratories con- formalizes prior ignorance of a system and allows
ducting crystal structure analyses, and the con- experimental data as constraints It does not em-
comitant growth in the importance of crystallogra- ploy conditional probability distributions, and ap-
phy to chemists Further refinements in methodol- parently does not suffer from a loss of efficacy
ogy and more efficient algorithms and programs with increasing size of the problem. Considering
[14,15] led to further rustication of X-ray structure all of this it is natural to regard the maximum
determination, as the esoteric aspects of the phase entropy method as a logical and potentially
problem became buried in packaged protocols. powerful extension of the direct methods with

Meanwhile, the probability theory that allowed promise for nacromolecular diffraction studies
the direct methods to stimulate the flowering of
small-molecule diffraction work, proved initially
to be its undoing in large-molecule work, since the REFERENCES
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Abstract

Carey, W P and Wangen, L E.. 1991 Determining chemical cbaractensncs of plutonium solutions using visible spectrometry and
multivanate chemometeic methods Chemometscs and Intetligent Laboratory Systems, 10 245-257

Two chemomemic analysis approaches for rapidly screening samples are presented The first method is for determining PuII)
and mitric acid concentrations by using the multivanato calibration technique of partial least squares {PLS) regression Quantitation
of plutonium using its visible spectrum is straightfovard. ho neer, the effects of ntric acid on the Pu(lll) absorption spectra are
subtle. and nitic acid quantitation from the absorbance spectrum is more difficult In is study PLS regression is successfully
applied to quantitate both plutonium and nitric acid by using ihe informanon contained in the absorption spectra of appropriate
solutions Evaluation of the calibration models, using test samples that span the range of the calibration concentrations, gave
predictions consistent with the standard error of the calibration models.

Secondly, pattern recognition methods are used to Ansestigate the effects of various amounts of nitnc acid. fluoride, or oxalate on
visible spectra of Pu(IV) solutions. The methods enable qualitative estimates of the solution composition, which can potentially be
used to adjust solution properties to desired specifications. The main pattern recognition methods emplo)ed are nearest neighbor
classification and principal components analysis

DETERMINATION OF P0(II) AND NITRIC ACID tween 2 and 20 mg/l. At higher nine acid con-

centratlons, the solubihty of Pu((Ill) increases; for
Plutonium can be precipitated from nitric acid example in 20 M nic acid, the Pu(ll) con-

solutions by forming an insoluble oxalate salt of centration increases tenfold. There are also irdica-
Pu(ll). However, the concentrations of both total lions that increasing the oxalic acid concentration
nitric acid (CHNO) and oxalic acid affect the above 0.2 M will lead to increased solubtlty of
solubility of the Pu(lll) oxalate product 11,21. the plutonium. To assist in optimizing solution
Pu(Ill) oxalate solubility is at a minimum between conditions for the precipitation reaction of Pu(111)
0.5 to 1.0 A nitric acid and with a 0.05 to 0.1 M oxalate, it would be beneficial to have a rapid
stoichiometric excess of oxalic acid. At these con- analytical method for estimating the concentra-
centrations the solubility of Pu(lll) ranges be- tlions of plutonium and nitric acid.
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In this study we evaluated a method based on these stock solutions were determined by standard
partial least squares (PLS) regression for predlc- radiochemical methods based on gamma-ray spec-
iing both Pu(Il) and nitric acid concentrations troscopy with a relative standard deviation of 0.5%
using the visible absorption spectra of solutions [12]. We prepared a 25-sample calibration set and
containing the species of interest Several tech- a 6-sample test set by performing volumetric dilu-
niques based on visible absorption spectroscopy tions of the stock solutions and adjusting nitric
have been developed for estimating Pu(III), and acid concentrations These solutions were pre.
quantitation is fairly straightforward [3-6) How- pared to cover the acid range Nitric acid con-
ever, determination of the mitrc acid concentra- centrations were determined by a standard ad-
lion from the visible absorption spectra is more dition method [131.
difficult because of the subtle effects of nitric acid We recorded spectra between 500 and 880 nm
on the spectrum. In this paper we demonstrate the on each sample using a 0.2 cm path length flow
use of PLS for extracting the small signal of the cell. The spectrometer for these experiments was
nitric acid effect in the presence of a much larger an LT Industries Quantum 1200. This instrument
signal caused by the Pu(II) absorption. This in- allows for the remote placement of sample cell
formation provides a measure of nitric acid con- and detector in an isolated glove box, with a
centration that can be used in studying the pre- fiber-optic bundle transporting the light between
cipitation reaction. source, sample, and detector. The resolution ob-

The fundamental theory and applications of taimed with this instrument is on the order of I nm
PLS have been investigated by several researchers with the scan for the visible region requiring 200
[7-11 PLS uses a large part or all of the spectral ins. For each sample, ten 200-ms scans were
data points to develop lincar combinations of the acquired and averaged.
spectral absorbances that correlate with the ana- Data analysts was performed using a PLS pro-
lyte concentration vector. The PLS regression pro- gram developed at the University of Washington
cedure is based on an algorithm in which the [14]. This code was implemented on a VAX 11-780.
scores are orthogonal. This method is similar to
principal component regressnon in that the spec-
tral response matrix is factor analyzed into or- Results

thogonal vectors based on the variance. However,
it includes information from the analyte con- Visible spectra of the plutonium species appear
centration vector in the matrix decomposition pro- in Figs. 1 and 2. Fig. I shows the sensitivity of
cedures The model built by the PLS algorithm several Pu(Ill) absorption bands in solutions con-
between the spectral and concentration variables taining 2.0 to 29.9 g/l of Pu(lll). The nitric acid
during calibration is different for each analyte in concentration in these four samples was ap-
so far as their effects on the spectra are different, proximately 1.3 M. In high-precision analytical
Two separate PLS models were developed, one measurements, the bands at 565 and 601 nin are
each for Pu(lll) and nitric acid Using the models commonly used to quantitate Pu(llI) after adjust-
developed during calibration, we predicted analyte ment of solution conditions. The effect of varying
concentrations in several solutions not used in nitric acid concentration on these spectra is il-
calibration. lustrated in Fig 2 where Pu(Ill) was held constant

(6.0 g/l) and nitric acid was varied from 0.6 to 2.3
Experimental M. This effect is most readily observed at 565 nm,

where the absorption peak tends to narrow or
All chemicals were reagent grade, except for the become more symmetrical with increasing nitric

plutonium nitrate stock solutions. Plutonium acid concentration, and between 750 and 825 nm,
nitrate stock solutions were obtained by dissolving where a change in one or more underlying ab-
PuO2 in CHNO3/1HF, followed by fluoride re- sorbance bands causes small changes in the spec-
moval using ion exchange. The concentrations of Ira.
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Fig I Absombance spectra of Po(III) from 20 to 299 g/I

Using the 25-sample calibration, separate PLS final models included all 25 samples. Table 1
models were built for Pu(Ill) and nitric acid. All shows the percentage variance explained for these
variables were mean centered and scaled by their calibration samples by the PLS model for both
standard deviation before the model was built. Pu(IlI) and nitric acid and the spectra The first
For both models the number of component vec- component explains 94 35% of the variance in the
tors to use was determined by cross validation spectral responses Evidently Pu(Ill) changes are
(alternating one-sample-removed method), and the the cause of this because 98 80% of its variance is
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Fi. 2 Effect of mne and on Pu(II) absorbance spectra Nitric acid vanes from 06 to 2.3 M ith a constant 60 g/ Pu(III)
concentration
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Fig 3 Actual Pu(lit) concentraiton versus predicted Pu(Iit) concentration based on a tvo-latent-vanable PLS model

explained by this component. This is as expected to model nitric acid molanty, we expect poorer
on the basis of Fig. 1. Nitric acid, however, has results.
only 5 78% of its variance described by the first The accuracy of a multivariate model can be
PLS component. For nitric acid more of the nitric visually examined by plotting the actual calibra-
acid variation is explained by components that tion concentrations versus the predicted values for
explain lower amounts of spectral variance. Be- each sample. For Pu(ll) the 25 sample concentra-
,ause very little of total spectral variance is used tions are plotted versus their estimated concentra-
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Fig. 4. Actual mine acid concentration versus predicted nitnc acid conteration from a six.latent.vanable PLS model,
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TABLE I These samples were prepared using the same tech-
Variance desnbed by PLS models for Pu(ll) and otni acid niques as for the calibration samples. Table 2

Latent Spectral Pu(lll) Nnnmcacd compares the resulting predictions with known
values. The calibration model is validated if thevaable Respo e Each Total Each Totai predicted values of unknowns are within the

Eac Toa standard error range of the model, which is a

1 9433 9453 90 9880calculation of the standard deviation of the model
2 361 9814 1.16 9996 residuals. For example, approximately 95% of fu-

ture samples should fall within tm, ice the standard
2 9435 9435 5.78 57 error if the unknowns come from the same popu-2 l181 96 17 29 55 35 34

3 351 9968 117 3651 lation as the standards For Pu(III) with a stan-
4 014 9982 2812 6463 dard error of 0.20 g/l, all of the predictions were
5 005 9987 1691 8155 within two standard errors, with four of the six
6 002 9990 1152 9307 predictions within one standard error. For nitric

acid all predicted values are within the two stan-
dard error limit (0.18 M CHNO 3) estimated by

tions using a two-latent-variable model shown in the model, and half of these samples are within
Fig 3. As expected, Pu(lll) is well modeled with one standard error. The estimated standard errors
an r statistic of 1.00 and a standard error of 0.20 of prediction were 0.25 g/l and 0 23 M for Pu(lll)
g/l Fig 4 provides a similar plot of measured and nitric acid respectively, which is slightly
versus predicted concentrations for nitric acid greater than that of the calibration set for both
using a six-latent-vanable model. In this case the analytes Although the number of samples was
model descnbes the overall nitric acid effect on limited in both calibration and test sets, there was
the spectra but with a greater degree of error ttan no statistical difference between the standard er-
the Pu(lIl) model. The r2 

statistic for the nitric rors based on an F-test comparison The results of
acid model was 0 93 with a standard error of 0.18 this test set provide confidence that both the
Al. Pu(lll) and nitric acid models are valid over the

A better measure of the validity of the calibra- range of concentrations normally encountered in
tion models is to examine that predictive capabil- the plutonium oxalate precipitation studies
ity using samples not included in the calibration We have demonstrated the use of the Pu(lll)-
sample set. To validate the constructed models, we nitric acid absorbance spectra coupled with PLS
analyzed a test set containing six samples with regression for the determination of Pu(lll) and
known Puflll) and nitric acid concentrations in nitric acid concentrations oser the analyte ranges
the same manner as the calibration set samples of 1.99 to 29.9 g/l plutonium and 0 44 Al and

TABLE 2

Prediction results for tes set samples

Sample Pu(Itl) (g/i) None acid (I)

True Estimated Difference True Estimated Ddferenoc

1 1.99 200 001 198 196 002
2 3.97 5.99 002 1.15 t 47 032
3 299 303 0,4 107 092 015
4 19.9 197 02 2.13 247 034
5 467 462 005 208 197 (1t1
6 156 12 0.4 094 116 022

Standard error of prediction 025 023

I.
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3.08 M nitric acid The precision of these predict- - Can we develop a classification procedure using
ions is suitable for studying the effects of oxalic Vis-NIR spectra that will separate good solu-
acid and nitric acid concentrations during the tions from bad ones with respect to ion ex-
precipitation of plutonium oxalate. Although change behavior (as defined by Rds)9
greater precision could be obtained using other
more complex methods, the information gained E.xpenmental
from these spectral measurements is adequate for
real-time analyses The coupling of multivariate Solutions and spectroscopy
regression techniques with absorbance spec- The data sets used in this study consisted of
iroscopy provides quaniitation of both Pu(lll) and spectra collected from two different experiments,
nitric acid front a single, easy-to-perform spectral which were identical except for the substitution of
measurement, thereby simplifying the instrumen- oxalate for fluoride in the second experiment. The
ration used in studying the precipitation reaction, solutions used are described in Table 3. Nitric

acid molanties ranged from 40 to 100. Fluoride
and oxalate concentrations ranged from 8 37 x

QUALITATIVE DETERMINATION OF Pu(IV) COMPLEX 10- M to 3 35 x 10-' M plus a zero value For
COMPOSITION all fluoride and oxalate concentrations, two differ-

ent concentrations of Pu(IV), 8.37 X 10-3 M and
The Vis-NIR absorption spectra of Pu(IV) in 4.18 x 10

- 2 
A, were used The spectra from solu-

nitric acid have several intense bands [151 The tions containing no fluoride or oxalate are com-
number, position, and intensity of these bands mon to both data sets.
depend on the total nitric acid (CHNO 3) molarity All the spectra were recorded after sufficient
and the plutonium oxidation state The spectra time for the solutions to equilibrate with a Quan-
may also be influenced by the presence of other tutn 1200 Vis-NIR spectrometer from LT In-
cations and anions Thus, it was hypothesized that dustries The wavelength region recorded was from
Vis-NIR absorption spectroscopy could provide 400 to 880 nm in 0 4-nm increments The solutions
information important for the chemical characteri- were contacted with anion exchange resin (40-70
zation of acidic plutonium solutions Such infor- mesh Lewatlit MP-500-FK) after their spectra were
ination could be used to chemically adjust such recorded. The Rd values were calculated by using
solutions before their treatment by ion exchange, initial and final plutonium concentrations for the
This study was designed to determine the effect of fluoride data. The Rd analyses are not presented
fluoride and oxalate on the chemistry of Pu(IV)- for oxalate data.
nitric acid solutions as evidenced by changes in
their spectra. Fluoride and oxalate complexes of Data reductiOi analyss, and interpretation
plutonium do not adsorb to the ion exchange Preprocessing the spectral data consisted of
resins being used in this study, several steps that were not always performed, de-

The research questions posed were
- How many different absorbing species are pre-

sent in the plutonium solutions ranging from 4 TABLE3
Al to 10 Al CHNO, in the presence of either Compositon of solutions used tot eftect of fluoride or oxalate
fluoride or oxalate? on spectra of Pu(tV)-ntc actd solutions *

- What spectral changes result from the addition Ntiric arid 4 M, $M. 6,5!, 7 M, 8 at. 9 M. 105!
of fluoride or oxalate to Pu(IV)-ntric acid Plulomom 8 37X10' M,4 ISX 10-2 At
solution? Fluoride or 000, 837X tO 3.167XI1-

2 
A!.

- Can the distribution ratios (Rds) and initial oxalate 25itX0
-
' .3 35X10

- 
at

concentrations of nitric acid, plutonium, fluo- At each combination of nitric acid molanty and plutonium
ride, and oxalate be predicted from the Vis- concentration, solutions containing either fluoride or oxalate at
NIR spectra of the solutions? the indicated concentrations ucre prepared
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pending on the particular study objectives. To decomposition and analysis of a spectral data
reduce the number of variables that the computer matei, whose individual rows consist of the Vis-
programs must handle, all the spectra were re- NIR spectrum of one of the experimental solu-
duced from 1200 to 600 absorbance values per tions under study, The specific methods used were
spectrum by performing a two-point average of pattern recognition based on principal compo-
successive absorbance values. Occasional baseline nents modeling (SIMCA) [16], pattern recognition
shifts were corrected by a simple baseline subtrac- based on nearest neighbor classification [17], pat-
tion method For each spectrum this involved tern recognition based on other methods con-
determining the minimum absorbance value, a., tamed in the ADAPT package [18], and principal
in that spectrum; computing the average of ak.., components regression [19,20]
a,, and a, I; and subtracting this average from
every absorbance value in each spectrum. More Results
sophisticated meth,'vs of baseline correction for
these spectra woula be difficult to implement be- For each data set, there are 70 spectra corre-
cause the spectra are so complex. Absorbance sponding to seven CHNO3 molarities, five fluo-
values approached baseline in only one or two ride or oxalate concentrations, and two plutonium
spectral intervals. To adjust for different con- concentrations (2 X 5 x 7 = 70). Thus, we have a
centrations of plutonium in different data sets, we large number of spectra that are quite complex
normalized the spectra to a sum of 1.0, a ' = and that vary considerably with changing con-
a,/(Sum a,), k = 1 to 600 for each spectrum. centrations. Fig. 5 demonstrates this complexity
However. this normalization is not done when the and the changes Laused by fluoride at 8 Mt CHNO3
best model for predicting plutonium concentra- for a 8.37XI0

- 3 
M plutonium solution. The

tions is desired. highest fluoride concentration is a 4: 1 fluoride-
Data analysis methods consisted mainly of to-plutoninim molar ratio. The peaks with 0 0 Af

variations of the mathematical-statistical proce- fluoride at 420 and 850 nm are absent in the
dires most commonly referred to as principal high-fluoride spectrum. There are numerous
components analysis. All of these methods involve changes in relative peak heights. The band at 475

008.
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nm is less intense in the high-fluoride spectrum. Cross vahdation
Oxalate does not have as great an effect on the The cross validation for principal components
spectra of Pu(IV)-nitric acid solutions as does analysis contained in the set of pattern recognition
fluoride (Fig. 6). computer programs, SIMCA, was used for the

present problem. SIMCA's program module
Number of absorbing species CPRIN was used with the cross validation option.
Matrix rank determination has become a fairly In cross validation, a subset of the data is ex-

.ommon procedure in spectroscopy for estimating cluded from the data set. Then a model is devel-
the number of absorbing species in a series of oped, and the excluded data values are estimated
mixtures [211. This procedure is valid provided (predicted) by using the model. The sum of the
Beer's model is obeyed, that is, if the total ab- squared differences betseen each true value and
sorbance is a linear summation of the absorban es each predicted value is the predi.ted residual error
of the individual species. The major difficulty with sum of squares (PRESS). Next, the excluded data
the procedure is determining the chemically subset is returned to the modeled data set, and a
meaningful rank. Because of noise, the matlivmati- different subset of the data is excluded Again, a
cal rank will usually be the lesser of I and K for a model is developed and used to predict the ex-
data set composed of I spectra. The i th row of the eluded subset. This process continues until all
matnx contains the spectrum for the ith mixture, data have been excluded and predicted one time
and K is the number of waveiengths at which there for each value of J (number of components). If,
are absorbance values. Various methods for de- after allowing for degrees of freedom, PRESS
termining the number of absorbing species have continues to decrease upon addition of component
been proposed. In this paper, we will discuss only J, component J is assumed to model nonrandom
the method based on cross validation. The spectral variation in the data. However, if PRESS for
data matrix used for this analysis consisted of component J is greater than PRESS for compo-
either the fluoride or oxalate spectral data set. In nent J - 1, component J is assumed to be model-
each case, there are 70 spectra with 600 ab- ing only random noise in the data. In this case
sorbance values, i.i., I by K - 70 by 600. component J should not be used, and we assume
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TABLE4 ADAPT analysis, the Rd values were used to
Cross vahdation results for determinng the number of linear divide the fluoride spectral data set into 'good'
independent components in the fluoride and oxalate spectral and 'bad' categories For the SIMCA pattern re-
data matrices cognition approach, data were not divided into

J Fluonde Oxalate separate categories before analysis because it is

Vanance PRESS* Vaiance PRESS possible to visually see the separation when plot.
explained J/(J-1) explained J/(J-1) ting certain of the sample scores.

1 7515 050 9059 031
2 2175 036 667 0.55 ADAPT results on fluoride spectra
3 142 075 149 069 The classification results appear in Table 5. The
4 049 086 053 078 input data to these pattern recognition methods
5 042 083 ot3 079 consisted of the principal component scores of the6 026 086 Oil 088
. 014 087 005 0.97 spectra rather than the spectra themselves All the
8 006 099 004 096 methods were able to separate spectra repre-
9 005 096 403 ** 190 senting good and bad Rd values reasonably well.

1o 003 1* oo 002 100 The linear learning machine correctly categorized

* For J-1. PRESS for J-I is based on the ranance all 70 spectra, and the Bayes quadratic classifier
plated by using the average values. only missed I out of 70. The nearest neighbor
** A stnti interpretaion of cross validaion results shows that results vary a little depending on the number of
there are nine and eight components in the fluonde and voting neighbors. Apparently three, five, or seven
oxalate data sets

voting neighbors give equivalent results, but none
are as good as the Bayes or learning machine

there are J - I linearly independent components methods.
in the entire data set. If the spectra of the individ-
ual chemical species add linearly, i.e. if Beer's SIMCA Plots for fluoride and oxalate spectra
model is obeyed, this number is the same as that We developed a six-component model using
ol absorbing species in the solutions from which SIMCA and the principal components of Vis-NIR
the spectra were obtained. spectra obtained from 39 solutions. The 39 solu.

The data variables were not scaled. Two differ- tions contained only nitric acid ranging from about
ent SIMCA runs were made, one for the fluoride 1 sf to 14 M and Pu(IV). No fluoride or oxalate
and one for the oxalate data set with each spec-
trum normalized to a sum of 1.0. The results of
these two analyses are listed in Table 4 in terms of TABLES
the ratio of PRESS for J components to the Pattern recogntioen summary results for lnuonde spectra using
PRESS for J - I components The variance ex- the Bayes quadratic classifier, hnear leaming machine, and
plained by each component is also tabulated. These nearest neighbor algonithm in ADAPT
PRESS ratios indicate nine components for the
fluoride spectra and eight components for the (o mlgh Ra) (Low R) neighbors
oxalate spectral data set. In the absence of fluo. th No No N hNa No No No
ride or oxalate. studies indicated five or six com- correct ncceci correct incorrect
ponents. Thus, the addition of fluoride or oxalate
to solutions of Pu(IV)-nitric acid (4 1f-10 Al) Babes 26 3 43 
add about three or four observable c.,mponents. Learning 26 0 44 0

In this study we applied SIMCA. nearest machine
neighbor, Bayes quadratic classifier, and the linear Nearest 22 4 36 8 1
learning machine from ADAPT [181 to investigate neighbor 23 3 39 5 3
their usefulness for classifying the fluoride or 24 2 38 6 5
oxalate Pu(IV)-nitric acid solutions. For the 23 3 39 5 7
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was in the data set. (SIMCA mean centers and CHNO molarity from the top left to the middle
autoscales the spectral intensities before calculat- right of the graph The numbers in the figure with
ing the principal components.) Here we use the an appended H designate total nitric acid molarity
first two principal components derived by this CHNO3. The numbers with a prefixed T were all
model to compare how the spectra of fluoride and between 6 5 and 8.5 M nttric acid, with nitric acid
oxalate data plot as compared with Pu(IV)-nitric molarity increasing from left to right. The desira-
acid. ble samples, from an ion exchange perspective,

The scores of the first two components for the plot at the bottom of the figure as 7H Clearly,
39 training samples are plotted in Fig 7, which given the location of a solution containing only
shows a nice semicircular trend of increasing Pu(IV) and nitric acid on this figure, the ap-
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proximate quantity of acid or base to add for above the seucircle defined by the training set.
adjusting the solution chemistry in a desired direc- Again, the numbers refer to nitric acid molarity
tion could be specified. and the Fs to fluoride samples. For a constant

Tiss same principal components model was nitric acid molarity, greater fluoride-to-plutonium
used to calculate scores for all samples of the concentration ratios plot higher in the graph. If
fluoride and oxalate data sets. The scores of the aluninum were added to complex the fluoride in
first two pnncipal components are plotted to- an unknown solution that plotted in the middle of
gether with those of some of the training samples Fig. 8, its position in this graph would move down
in Figs. 8 and 9 for fluoride and oxalate samples, and to the right. Upon arriving at the semicircle
respectively. (Training samples are in bold print.) representing the training set, a base, such as
Fig. 8 shows the fluoride spectra plot in the plane sodium hydroxide, could be added to the solution
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until the measured spectrum's principal compo- effect on the Pu(IV)-mtrlc acid spectra as does
nents plotted between 7 AM and 8 Al CtlNO. i.e., fluoride (Fig 6). which agrees with the known
7H and 811. In this way. Vts-NIR spectrometry chemistry of these systems
could be used for real-time adjustment of the
solution chemistry to arrive at a system desirable
for ion exchange. SUMMARY

The first two principal component scores of the
oxalate spectra, together with those of some of the We have shown that Vis-NIR spectra of
training samples, are plotted in Fig. 9. In contrast ?u(IV)-ntrtc acid solutions containing either flu-
to the fluoride samples, these samples generally oride or oxalate provide information .oncerning
plot on or below the semicircle defined by the the solution chemistry Pattern recognition meth-
training samples. This plot verifies our earlier ob- ods based on the spectra can be used to determine
servation that oxalate does not have as much chemical character of the solutions. Plots of prin-
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cipal component scores provide information about conmponent analysts applied to iramo metal deternsations.
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Discussion of "Determining chemical characteristics
of plutonium solutions using visible spectrometry

and multivariate chemometric methods"
by W.P. Carey and L.E. Wangen

Mark E, Johnson
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This paper is an ideal contribution to the Sta- for the zero fluoride and oxalate concentration. If
tistics in Chemistry conference held in College there were five concentrations used, where is the
Station The authors present several challenging fifth curve?
problems which they address in an intelligent fash- Figs. 7-9 are curious. Many times statisticians
ion using PLS regression and a variety of pattern neglect the very useful technique of designating
recognition techniques. points on plots as a value-added characteristic

Their most successful application is in the de- Fig 7 seems (unfortunately) to set a standard by
termination of Pu(lll) and nitric acid using PLS which we view Figs. 8 and 9. The scatter in Figs. 8
regression The results on test samples given in and 9 is much more than in Fig. 7 What fraction
Table 2 provide strong evidence that the authors of the variation is explained by the first two
can predict unknjwn concentrations. Perhaps the principal components?
authors might comment on any operator or tech- One final comment concerns Table 5. Although
nician effects Obviously, they are adept at using Bayes and learning machine dominate nearest
the LT Industries Quantum 1200 device. In routine neighbor procedures here, I am unwilling as yet to
operations by lesser skilled technicians, would the dismiss nearest neighbor (the authors do not sug-
performance be so good? gest this but a reader might inadvertently con-

The questions related to qualitative determina- dude as much). I suspect that if the data were a
tlion of Pu(IV) complex composition are clearly tad more 'noisy', nearest neighbor might make a
more difficult and the results not so clear-cut. I comeback. What is it about the authors' applica-
am a little unclear on the results in Figs. 5 and 6 tion that favors Bayes and learning machine?
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Abstract

Kim, Y -I and Nachtsheim. CJ. 1991 Transformation robust expenmental design wth application to some problems in chemistry

Chemormtes and Intelligent Laboratoy System. 10 261-270

In this paper sin consider the selection of an appropriate experimental design %hen the exact form of the error distribution is
unknown The goal of error-robust design is to design An expenment so that the 'l-elffects' resulting from a lack of knouledge of the
error structure will be minimal Numencal algonthms for computer construction of error-robust designs are developed and the

method is illustrated in connection with the design of experiments for nonlinear modeling of chemical reactions

I INTRODUCTION Generally, we observe that the design chosen
will explicitly depend on the experimenter's

The examination of standard statistical tech- (1) design criterion;
niques in order to determine their sensitivity to (2) definition of the design space;
assumptions and development of new techniques (3) a priori specification of the model.
that are insensitive to assumptions have been major By 'model' we mean the distribution of a response
areas of statistical research in the last two decades y(x), at some point x in the q-dimenstonal design
Experimental design is an area in which it is space X. Unfortunately, precise a prior specifica-
particularly important to investigate questions of tion of points (1)-(3) is often difficult in practice.
robustness because an experimenter's assumptions This fact has led statisticians to search for ways of
about the experimental process are critical in de- constructing designs where one or more of the
termining the design. Furthermore, the design must items listed cannot be so explicitly stated.
be chosen before the data are collected and so For example, with regard to (1) above, Box III
cannot be discarded if the data indicate that the stressed the need to design experiments with many,
assumptions are seriously violated. Thus it is im- sometimes conflicting, goals in mind, not just one
portant to examine experimental designs for their implied by a single design cntenon. Kiefer [2]
sensitivity to assumptions, examined the robustness of optimal designs to
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changes in criteria. Welch [3] presented a method signs The only relevant paper on this issue was
for cataloguing designs that are optimal by one found to be ref. 28 They applied a 'power trans-
criterion, so that further comparisons among these formation weigthing' technique to develop sequen-
optimal designs could be made on the basis of tial experimental designs for precise parameter
other criteria estimation of the model and transformation

The question of robustness to assumptions con- parameters together.
cerming the true model r) has been widely studied This paper has the following structure. We first
Two different, but complementary, approaches review the design of experiments in the presence
have been taken. The first approach has sought of knowr., non-constant variance in Section 2. In
designs that will yield reasonable results for the Section 3, a general definition of error-robustness
proposed model even though it is known to be is developed and a number of examples are con-
inexact. Steinberg and Hunter [41 call these sidered. Carroll and Ruppert [29] recently advoc-
'model-robust designs'. For examples of work in ated a new method (power transformation on both
this realm, see refs. 5-9. The second approach has sides-PTBS) for simultaneous estimation of the
focused on developing designs that facilitate im- regression parameters and index of the 'best'
proveiient of the proposed model by trying to power transformation, X, We show in Section 4
highlight suspected inadequacies. Steinberg and that designs that are robust (in a sense to be
Hunter call these designs 'model-sensitive designs'. described) to the eventual specification of X are
Examples are given in refs. 10-17, among others, related to error-robust designs Two important

Special 'model-robustness' problems arise in examples from the literature are studied in Section
the design of experiments for nonlinear models 5. Some closing remarks are given in Section 6
This is because the best design depends, in gen-
eral, on the unknown parameter values. Investiga-
tors are thus placed in a paradoxical position of 2 OPTIMAL DESIGN IN THE PRSENE OF NON-CON-
having to known at design stage (at least ap- STANT VARIANCE
proximately) the very quantities that they are con-
ducting the experiment to estimate. Little has been Z 1 Notation
done to assess the robustness of nonlinear designs
to misspecification of 0. (Chaloner and Larntz [181 In what follows, we assume that responses are
develop a Bayesian approach in which only a prior independent having mean E(y(x)) = i(x. 0) and
distribution for 0 is required.) For reviews of variance Var ((x)) = o

2
(x, X) where 0 and X

nonlinear designs, see refs. 19 and 20, among are unknown parameter vectors of dimensions p
others, and q respectively We use the term error function

A final area of robustness concerns the sensitiv- in connection with 0
2
(x, X), its inverse,

ity of designs to the specification of error struc- 0-
2
(x, X), is termed the efficiency function, where

ture. The occurrence of outliers and missing ob- we shall assume 0 < o2
(x, X) < o. For brevity

servations represent two ways in which these as- we will often the abbreviated form oa(x)
suniptions may be violated. A number of authors Consider an N-point experiment in which n,
have studied design in such circumstances. See, for observations are taken at the points x, G x for
example, refs. 8 and 21-23 regarding design in the i - 1, 2-.... n such that E-A it, - N. Such an ex-
presence of outliers. Also see refs. 24 and 25 periment can be described by a measure [N] as
concerning design when missing data might be a follows:
problem. Concerning lack of independence in the .n, if x - X, e (x"..., xj
error terms, see refs. 26 and 27. [NI(x) ,

Surprisingly little has been done, however, with 0; otherwise
regard to the designs that are robust to the general Let S( [Nj) - (x,...,. x.) denote the support of
misspecification of the error structure. In what [N]. Note that if G,= ,[NI/N, then ,, is a
follows, we consider the construction of such de- discrete probability measure on j Thus, an exact
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or discrete experimental design is a probability spect to the discrete probability measure N' In

measure N on the design space X subject to the general, the normalized information matrix of an

restriction that N N(x) is an integer, experimental design is
Removing the restriction that ,(x) be a multi.

pie of I/N, the set of approximate experimental M(U, 0) = fe-'(x, X)f(x, 6)fr(x, ) d(x)
designs on X is denoted by x

The dispersion matrix M
-
' ( , 0) is sometimes

(t[ ifx dt(x) - 1, 1(.) >: 0, written D(t, 0).
Many criteria have been proposed for optimiz-

ing the selection of a design for the design
for every x E X problem (q, a 2

, X). Generally, the criteria are
based on some functional of the information ma-

An (approximate) design problem, specified by trix, M( , 0). Motivation for such criteria is often
the triplet (il, o2, X), is solved by selection of an based on the properties of the resulting least
approximate design E - for the model i?, the squares estimate 0. For example, a design , is
design space X and the error function o". Note defined to be D-optimal for (7), 02, X) and prior
that in many design problems an exact design X, estimate 00 if
can be approximated by an approximate design mmax jM(4, o) I = IM( o, O0) I
2.2 Measures of optinahty

By definition, D-optimal designs minimize the

We assume that least squares estimates 0 of the (asymptotic) generalized variance of the least
parameter 0 are to be obtained Let f(x, 0) = squares estimate of 0.
asi(x, 0)/00 and Alternatively, suppose that an experimenter is

concerned with prediction. The least squares
[I ' 0)] estimate of the mean response at a point x is

F(O) . •A X) = n(x, 9)

t,(X° 0)Var(S( x)) = Var( 1(x., j))
Then for these estimates (with n, a 1), the asymp-
totic covariance is given by -fr(x, §)D( , §)f(x, d)

Var(§) - IF( ) rV- iF(g)]- I d(x, §' )

where V - diag (a
2
(xi, A), ._0

2
(x,, X)). For G-optimal designs minimize the maximum nor-

linear models, the so-called design matrix, X= malized variance of prediction a-(x, X) d(x,

F(O), is independent of 0 For any N-point dis- t, j). Formally, a design * is G-optimal if

crete design N- we have nm max a-
2

(x, X) d(x, ), Oo)
te=- xex

F( )rV - F( d ) -m in '(x , ) d(x , o)

- N E 0-'(x, \)f(x, 0)fr(x, e)t,(x) ,x
est(.) The D-efficiency of a design for (il, a2, X) and

= Nfa-'(x, X)f(x, )fr(x, J) dN(x) prior estimate 0o, with respect to ,, is
D(x t1, (n, .', X))

and hence the i,jth element of F()V-IF(d)/N
is 0-

2
(x, \)f,(x, O)f,(x, 0), averaged with re- (det N1i,. 00) det M( , On))
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Similarly, the G-efficiency of a design , for design shifts the middle support point toward the
(7, 02, X) and prior value 0

O, with respect to ,, is left side of the design space. Surprisingly, the
D-optimal design shifts mass toward lower van-

G(,, i, ( , o2, x)) ance (high efficiency) region of the design space.
= max d(x. i, 0o)/max d(x, , 00) This pattern has consistently appeared in worked

ex ex examples. For further results see refs. 32 and 33.
The following result, given by Kiefer and Wolfo- We note from the table that the G-efficiences are
witz [30] in the context linear models and later [31] monotonically decreasing in X. For example, with
in the context of nonlinear models, shows that D- X = 9, the G-efficiency of $i is 0 888. This very
and G-optimal designs are equivalent, simple example illustrates the nonrobustness of

the usual optimal design and, we think, motivates
THEOREM 1. The following conditions are the need for the study of designs which are robust
equivalent: to misspecification of a' In the following section
(a) " is D-optimal we introduce the concept of error-robustness and
(b) ,' is G-optimal develop methods for constructing robust designs.
(c) maxo-

2
(x, A) d(x. c, 80) =p.

The set of all designs satisfying these conditions is
convex, and the corresponding information 3 ERROR-ROBUST DESIGN

matrices are identical.
The equivalence of conditions (a) and (c) yields The concept of an error function is crtial in

a simple method for checking the optimality of a both design and analysis In data analysis con-
candidate design J. If the maximum normalized texts, graphical examination of scatterplots of re-
prediction variance is greater than p, then t is not siduals versus predictors or fitted values is used to
D-(G-)optimal. Numerical algorithms [32) for con- detect nonconstant variance. A systematic mega-
structing D-(G-)optimal designs make direct use phone shape in the plot would indicate that the

of this condition, variance of the response depends on the quantity

We note that in practice o
2(x, X) is usually plotted on the x-axis Cook and Weisberg [34]

assumed constant. The impact of this assumption suggested an alternative approach for diagnosing

can be illustrated by the following example. Sup. non-constant error terms. It involves expansion of
pose i(x. 0) =fr(x), where I(x) = (I, , 5,2) the regression model by assuming a particular,

and X = [- 1,1) Suppose also that o
2
(x, A) though widely applicable, functional form for the

= I[(A - 1) v + X + 1)] for A > 1. Thus, the error variance:
variance increases linearly with slope (A - 1) over var(y(x)) a exp(Arx)
the design space X and if X - I, o

2
(x, ) = .

Table I shows D-(G-)optimal designs for various where A is an unknown parameter vector. Cook
As. Note that as the value of X increases, the and Weisberg utilized this difinition to propose

the score test and the equivalent graphical method
for testing the assumption of constant error terms

TABLE t in linear regression. Many of the error functions
Location of interior points (S') of G.optmal designs ( S) for commonly encountered in data analysis arise as
quadratic regression for vanous X. x-l-I,I o(a. A) special cases of this important, general form. Sup.
- 'lA -tI)x + A + . 6(± ) - (a) - , pose we expand var(y(x)) - exp(Xrx) about x = 0
A Intenor point x5  GEtficieny of fi in a single dimension. Then
7- 0 1000
S -0141191 0958 var(y(x)) a I +)sx+ X

2
x'/2

5 -0183268 0924 and we specify 0
2
(x) as proportional to a

7 -0221089 0902 quadratic function of x. Specifying only the first
9 -0241081 0888 term implies that o'(x) is proportional to x, which
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may be a very natural assumption in a compara- tion 1 indicates that a design is error-robust design
tively narrow range, if and only if

The results of Section 2 indicate that optimal nin max maxo-
2

(x) d(x, 4, 0o)
designs depend on the model specification sl as 6, omaE mx a

Nell as the variance function a. As stated previ-
ously, it is typically the case in practice that the max maxo

2
(x) d(x, ", 0o)

variance function o
2
(x, A) cannot be determined ouE xex

before experimentation. Given that the true error Thus the error-robust design minimizes the 'worst
function 02(x. X) is unknown we will consider a case' normalized maximum variance of fitted val-
design to be robust to specification of o

2
(x, X) ues.

if is lughly efficient for error functions likely to In most instances, analytic characterization of
be encountered in practice. More specifically we the error-robust design is impossible, and numeri-
shall assume that a' is an unknown element of cal methods are required See Kim [33] for some
some known space of error functions, E. We will notable exceptions. The following algorithm, which
then attempt to characterize designs that are effi- is a simple modification of one by Fedorov [321,
cient, in a sense to be described, for all possible can be used for computer construction of error-
0' EE. To do so, we shall require the following robust designs.

result, due to Atwood [351, which relates the D
and G efficiencies of a design Algorithm I

THEOREM 2 Let ,,i be the f-optimal design 1. Specify nonsingular starting design , Set i = 1.
2 Find x, such that max max oa

2
(x) d(x, ,,for (si, a

2
, X). Then for any design in Z, .'GE Gx

0o) = o-'(x,) d(A,, t, 0o).
D(*, oi,(s, X2, x)) X G(4, o.(si, 02, x)) 3. Let a,= 1/(i + s), s > 0, and form , (1

G-efficiency provides a lower bound for the D-ef- cx,)f, + A,. where places unit mass at x,
ficiency of a design with respect to the D-opti- Update D.
mal design ,a. Following Thibodau [8), in con.- Check for convergence. One simple approach is

mal esin ~i Folowng Tibocau[8],in on- as follows. Assume k > 2 is a user defined
text of model robustness, we attempt to construct anteger. A lsym k > 2 Let

designs having high D-efficiency for each a
2 

r E
by maximizing the lower bound. Loosely speaking, 8j1 --

2
(x,-,_,) d(x,.,+,, Oo)

we will consider a design error-robust if its G-ef-
ficiency is high for every a2 G E. Thus no matter I 5j < nin[ikJ

what the subsequent analysis indicates regarding Let s
2 

be the sample variance of the (8,1. If
choices of 02, the D-efficiency of the design will i > k and s

2 
is sufficiently small, stop.

be relatively high. Formally, we have Otherwise, set i - i + 1 and go to 2.

Note that the sequence (a, ), as specified above,
will not, in general, lead to monotonically decreas-

Defimton I. The design 6* E . is error-robust if ing o-
2

(x,) d(x,. ,, 00)
and only if

max min G(f, a',(sl, X2, x)) As a simple illustration, consider again the
f'-.i0oE quadratic regression model fr(X) -(1, x, x

2
)

with E_(o
2
(x)1o

2
(x)c(X

- 
1)x+

(
+1), Xmin G(4*, .,i,(s, 02, x)) - 1, 3, 5, 7, 9). The following design was found to

be error-robust using the algorithm described
Notice that because the number of parameters above: (± 1) - 0.325, C(0.039609) - 0.182,

in the model, p, does not change with a2, Defim- e(-0.260323) = 0.167. Table 2 presents G-ef-
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TABLE2 mean structure, which may be derived, for exam-
G-efficmena sof vanous designs s for quadracic regression on pie, from a physical system, is E(y(x)) = 71(x, 0)
x - i- l.l] 2

(x) a (N - l), +(A + 1) and that 71(x, 0) > 0 for x E X. Errors (c) are not

Desgn Actual y necessarily additive (or constant over X) implying

1 3 5 7 9 y(x) =g(t(x, 0),()
1i t0 0.958 0924 0902 0888 For example, if the errors are log normal and

4 0948 10 0996 0998 0.994
4 0914 0993 10 0998 0994 g(a, b)-ab (i e., errors are multiplicative), taking
f7 0876 0979 0997 10 0999 logs yields
4o 0854 0969 0992 0998 L0 log(y W))=log q(x, 6) +f
Robust 0974 0991 0979 0978 0974

Where (c) are normally distributed. This type of
situation led Carroll and Ruppert to consider a
family of strictly monotonic transformations

ficiencies of designs constructed under varying h(y, X), indexed by the q-vector X, and to assume
assumptions about X For example, the first row that for some value of X, say Xo,
summarizes the performance of the optimal design
under assumption X = 1, for vanous alternative h(y, X0) 

= h(s(x, 0),Xo) + c

'true' efficiency functions As noted previously, if This approach is in the spirit of Box and Cox [36],
X turns out to be 9 by subsequent analysis, the who suggested the well known power transforma-
design Will be 88 8% G-efficient. The worst case tion family:
occurs in the lower left-hand corner of the table.
Here the experimenter has assumed X = 9, when X h(y, X) -yt" = (y' - 1)/ if X= 0
turns out to be 1, in which case the G-efficiency of - log (y) if X 40
the D-optimal design is 85.4%. In contrast, the
worst-(.ase G-efficiency of the error-robust design Box and Cox sought a transformation that achieves
is 97.4% Interestingly, the error-robust design (a) a simple additive or linear model. (b) homo-
consists of 4 support points. Intuitively, mass at scedastic errors, and (c) normally distributed er-
x = 0 039609 was required to protect against X - I rors In PTBS regression, both the response and
where mass x = -0.260323 was required for pro- the model are transformed via h. An important
tection against A = 9. This intuitive explanation is advantage of PTBS regression is that the original
supported by the fact that during execution of the meaning of the parameters is preserved Estima-
computer algorithm, maximization of a-

2
(x) d(x. tion of 0 and A in PTBS regression is typically

, 0o) occurred only at A - 1 or A = 9. This exam- earned out via normal theory maximum likeli-
pIe suggests that for A - [a,b), in some cases a hood.
reasonable approximation to the error-robust de- For the above model, we have
sign will be obtained by mixing the D-optimal O'l"(x, 0)
desgns , and , appropriately. 80 f5 (x, 0)

q(x, O)5-f(x. 0)
4 POWER-TRANSFORMATION ROBUST DESIGN where f(x, 0) is as defined previously: f(x, 0)

Recently Carroll and Ruppert 129) introduced a ari(x, 0)/0 Given X, information matrix and

method, power transformation on both sides, variance functions are defined as

PTBS, for simultaneous estimation of regression Mx( , 0)
parameters and an appropriate power transforma-
tion index. They discussed its use with known, f n(x, O)?"s-tf(x, O)fT(x, 0) d(x)
nonlinear regression models. Suppose the known x
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and Since PT-robustness is a special case of error-
robustness, the algorithm previously developed for

d )(x, -, ) I -(x, ) x , ) computer construction of robust designs is appi-

XM~i(T , 0)!(x, 6) cable.

respectively.
The above expressions indicate that the design 5 TRANSFORMATION ROBUSTNESS APPLICATIONS

problem may be viewed as standard, with induced
efficiency function o-

2
(x, X) - ii(x, #)t) It is The following two examples are taken from

also apparent that choice of design will depend on literature and are frequently cited in papers on
an experimenter's a priori suspicions concerning nonlinear design. These examples illustrate how
X. Typically, one takes X = 1 and hopes for the inefficient the usual D-optimal designs can be in
best, although consequences can be dire. For ex- the presence of uncertainty about the error struc-
ample, suppose that the underlying theoretical ture, and the efficacy of the robust approach.
model is quadratic and errors are multiplicative
and log normal. That i,. il(x, 0) = 01 + 02x + 05x

2

and X = 0 gives the appropriate transformation. Example 1. The following experiment was re-
For 07= (, 1, 1) an& X w (0,11. the design s(+ 1) ported by Box and Hunter (20) and has been
- 1, ,t(0 373) j is D-optimil. On the other discussed by numerous authors The purpose of

hand, if the experimenter assumes X - 1, and ob- the experiment is to model some catalytic reac-
vious choice might be the usual D-optimal design tions of the type R - P, + P, in which the reagent

. which places j mass at the points ± I and 0. R is some quaternary or primary alcohol from a
Since max, x do(X. 1, 0o) -3.56. , is 84% G- log chain, the product P, is an olefin and the
efficient. If the appropriate A is - 1 or 2, the product p is water. The theoretical model for such
G-efficiency of , drops to 47% in both cases, a reaction is

The above discussion motivates the need for
designs for PTBS regression that are robust to 0(x, 6) 1 + Oxi + 6x

specification of A for X in a specified set L We
offer the following. where it is the speed of the chemical reaction, x,

is the partial pressure of the product P, x 2 is the
partial pressure of the product PI, 01 is a reaction

Definition 2 The design * e Z is power-trans. parameter, 82 is the absorption equilibrium con-
formation (PT) robust if and only if stant for the product P,, and 0, is the effective

miii max max dx(x. ~ max max d5 (x, constant of the reagent R.
mcm Ax dxe X) mxax For purposes of design construction, following

Box and Hunter (201, the prior values of the
where d5(x, f) -f,(x), fx). parameters were fixed at 0- (2.9,12.2,6.91. It was

As noted, for a specified regression function assumed that observations are possible in the re-
71(x, 0), the Carroll and Ruppert family of trans- gion x- (xi. x2 (0 _- 3, 0 _-5 3), which
formations indexed by A e L induces a corre- leads to the locally D-optimal design, 0(0.3, 0.0)
sponding family of induced error function E\ - (3.0, 0.0) - $fo(3.0. 0.8) - 1/3. 1) and X are
{rix, O)'R "tll L). pictured in Fig. la. The fact that the design does

not cover the design space leads one to questiou
Thus Definition 2 may be restated in .he following the logic of the design, unless the experinenter
way. has particularly strong faith in his assumptions.

The D-optimal designs for A - - I and A - 0 are
Definition 3. The design * E is PT-robust if pictured in Figs. lb and Ic, respectively. Note that
and only if " is error-robust for Ei. for A < I the efficiency function is undefined at
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3 [the previous example the error-robust design seems
to represent the best trade-off possible between
D-optimal d igns for A, = ± 1. Table 3 also shows
that this 66% ;-efficiency is high in comparison to
the = 0% G-efficiency resulting from the case
when we assume X = 0, and X turns out to be 1.

0 00

0a) (b) Example 2 The following model was studied by
Carr [37)

3 Ill 0 OO(X2 - x3/1.632)

where ? is the rate of disappearance of n-pentane,
x1 . x2, x3 are the partial pressures of hydrogen,

I I n-pentane and i-pentane respectively, 0, is a reac-
1 t lion parameter and 02. 03, 04 are equilibrium

a 0 e constants (psia-). For this problem, X
((xI, x21 x3)1107 . ; ,i< 471, 69<x25294; 11

(Wi (d) <x3 e 121). Box and lHll [381 later used power
Fig I Optimal designs for Example t X - [0.31f (a) Optimal transformation weighting to fit the model to Carr's
design for A - I ((03, 0) - ((3.0) - ((3.0 8)- /3 (b) Opts.
ma deign for A--1. ((01.0)-((01.3)-1/3, ((3,0)-
J(3. 3). 3/16 (c) Optimal design for X -0 J(031.0)- ((3, 0)
-((0 3. 3)- 3/3 (d) Robust desgn ((3.0)- 0 216: ((3.0 8)
-017. ((03,0)-OtOt ((01.3)-0227, ((01.0)-0212. itt

((3.1 7) -0073

x = 0. Thus it was necessary to truncate the de- " =

sign space such that X = ((x1. x 2) I A < xI 
< 3, 0

:; x 2  3) for some A > 0. We chose A = 0.1. The (5)

truncation is indicated in Figs. lb and le.
The PT-robust design is pietured in Fig. Id.

G-efficiencies of tie robust design for various true 12, it

A are summarized in Table 3. Notice that the
worst ease G-efficiencies result for X ±1 with
both values being about 66%. As was indicated in {

107 471 7 1

TABLE 3 () (0)

G.cttirienes for designs in Example I rip. 2 Optmal designs for Example 2 (a) Optimal design for
A - 0 ((107. 294. 1) - ((471. 69. 33) - ((107. 69, 11) -

A Assumed X ((107.125 5.121)-025 (b) Optimal design for A -05 ((107,

-l 0 1 294. 1)-((471. 294. 33)-((107. 69. 1)-((107, 294.
121)-025 (c) Optimal design for A -: ((107.204. 11)-

- 1 I00 0520 0220 JOI. 294. 11) - ((107. 1252, ) - ((107. 294,93 5) - 0 25
0 0997 131000 00 (d, -bust design' ((107.294.11)-0189. ((107.12525.11)
1 0000 0214 1 O00 -0974. ((107.294.935)-01116. ((390.294.)5-0181.

Robust 0656 0754 0662 f(107.69'935)-0099. ((471.69.11)-0118: ((107.69.11)
- 0 142. ((107.294.121)- 0 082.
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TABLE4 described in ref 18. Such methods are currently

G-efficiencies for designs in Example 2 under investigation

A Assumed A

0 1/2 1

0 1 000 0 350 0094 REFERENCES
1/2 0536 1000 0822
1 0304 0663 1000

1 G E-P Box. Choice of response surface design and al-
Robust 0768 0 767 0768 phabetical optimality. Utdttas Mathematsea. 21B (1982) 11-

55
2 J Kiefer. Optimal design variation in structure and perfor-

mance under change of criterion. Biomensrka, 62 (1975)
24 observations. We consider the construction of a 277-288
PT-robust design. 3 WJ Welch, Branch and bound search for experimental

Carroll and Ruppert obtained the PTBS designs based on D-optimality and other criteria. Techno-

parameters estimates (0, )(39.2, 0.03, 0021, metrincs. 24(1982)41-48
paaetr 0.72)Tesmaes (oin, est e ( 0 d 4 DM Steinberg and WG Ifunter, Experimental design
0 104, 0.72). These potnt estimates for § are used resnes and comment, Technoerirs, 26 (1984) 71-96
as prior values in what follows. Reasonable values 5 G F.P Box and N R Draper. A basis for the selection of a
of A were thought to be in the interval L = 10,11. response surface design, Journal of the American Statistical

Computational constraints forced us to rather Assoeiation, 54(1959)622-653

severly discretze both L and X- We took L = 6 K. Kussmaul, Protection against assuming the scrong de-
gree in polynomial regression. Technometrcs. 11 (1969)

(0,0.5,1.0) and to approximate X, we used as a 677-682
candidate set corresponding to the 53 factorial 7 E Lauter, Experimental design in a class ol models.
region The error-robust design is pictured in Fig Maihemarisihe Opeiaains Forshiung and Statask, 5 (1974)
2d For reference, the D-optimal designs for A - 0. 379-398
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PhD Dissertation. Uniersity or Minnesota, Dept of Sta

gives G-efficiencies for varying designs and as- tistcs, 1977

sumptions about X For example, a G-efficiency 9 R D Cook and CJ Naslctsheim, Model robust, tinear-opti-
of 30.4% occurs when X - 0 and constant variance mal designs. Technometrics. 24 (1982) 49-54
is assumed. In contrast, the minimum G-efficiency 10 W 0 Itunter and A M Reiner. Designs for discmminating

for the error-robust design is 76%. beituen iso nval models. Technometrics. 7 (1965) 307-323
1I G EP Box and WJ till. Discninination among mechams.

tic models. Technometr , 9 (1967) 57-71
12 S Ni Stigler. Optimal experimental design for polynomial

6 CONCLUSIONS regression, Journal of the American Statistical Association.
66 (1971) 311-318

In this paper we have suinnianrzed research 13 A C Atkinson. Planning experiments to detect made-
quactes in regression models. Biomria, 59 (1972) 275-

directed toward the characterization of designs 293

that are insensitive to the specification of error 14 A C Atkinson and V V Fedorov. The design of exper.
struture. We have developed the related concepts ments for disnmiating bctin to rival models. Bi-

of error and transformation robustness and cx- merika, 62 (1975) 57-70

amined a number of designs that were approxi- 15 A C Atkinson and V V Fdorov. Optimal design expen-
ments for discnmiating bcten several models. Io-

niately optimal by our stated criterion. Some obvi- mtria, 62 (1975) 289-303

ous extensions, however, are still needed. While 16 L.R. Jones and TJ Nimhrll, Design i.ntena for detecting
the designs calculated are reasonably robust to the model inadeqlasy. Bioneitriia. 65 (198) 541-551
specification of error structure in the nonlinear 17 %i1 D Morris and TJ Mitchell. T o lel multifacior de-

case they suffer from the need to specify 0 a prior. signs for detecting ite presence of teractions. Technomet-
ria. 25 (1983) 345-355

One way of alleviating this difficulty may be to 18 K. Chaloner and K Larnt. Optimal tayesian design ap-
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with the methods of Bayesian nonlinear design as cal Planning and Inference, 21 (1989) 191-208.
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